Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P5408 第一类斯特林数·行

P5408 第一类斯特林数·行

根据递推公式,第一类斯特林数的生成函数 $ \sum _ {i = 0} ^ n {n \brack i} k ^ i = k ^ {\overline n}$ 。考虑如何快速计算上升幂,考虑倍增,$k ^ {\overline {2n}} = k ^ {\overline n} (k + n) ^ {\overline n} $ 。

记 $f _ i$ 表示多项式的第 $i$ 次项系数。对于多项式平移,有:

$$
\begin {aligned}
& f(x + c) \\
= & \sum _ {i = 0} ^ n f _ i (x + c) ^ i \\
= & \sum _ {i = 0} ^ n f _ i \sum _ {j = 0} ^ i \binom i j x _ j c ^ {i - j} \\
= & \sum _ {i = 0} ^ n x ^ i \sum _ {j = i} ^ n f _ j \binom j i c _ {j - i} \\
= & \sum _ {i = 0} ^ n \frac {x ^ i} {i!} \sum _ {j = i} ^ n f _ j j! \frac {c _ {j - i}} {(j - i)!}
\end {aligned}
$$

可以做卷积。

复杂度 $T(n) = T(\frac n 2) + O(n \log n) = O(n \log n)$ 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
flag |= c == '-';
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...Rest>
void read (Type &x, Rest &...y) { read(x); read(y...); }
template <class Type>
void write (Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 1 << 20, mod = 167772161;
int fact[N], ifact[N], rev[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void init ()
{
fact[0] = 1;
for (int i = 1; i < N; ++i)
fact[i] = (LL)fact[i - 1] * i % mod;
ifact[N - 1] = binpow(fact[N - 1]);
for (int i = N - 1; i; --i)
ifact[i - 1] = (LL)ifact[i] * i % mod;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 1; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = ((LL)p + q) % mod, x[i | j | mid] = ((LL)p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
void PolyMul (int n, int *f, int m, int *g, int *res)
{
int bit = 0;
while (1 << bit < n + m - 1) ++bit;
int tot = 1 << bit;
for (int i = n; i < tot; ++i) f[i] = 0;
for (int i = m; i < tot; ++i) g[i] = 0;
ntt(f, bit, 1), ntt(g, bit, 1);
for (int i = 0; i < tot; ++i)
res[i] = (LL)f[i] * g[i] % mod;
ntt(res, bit, -1);
}
void PolyMove (int *x, int len, int k)
{
static int A[N], B[N];
for (int i = 0, t = 1; i < len; ++i, t = (LL)t * k % mod)
A[len - 1 - i] = (LL)t * ifact[i] % mod;
for (int i = 0; i < len; ++i)
B[i] = (LL)fact[i] * x[i] % mod;
PolyMul(len, A, len, B, x);
for (int i = 0; i < len; ++i)
x[i] = (LL)x[len - 1 + i] * ifact[i] % mod;
}
void solve (int n, int *f)
{
if (!n) return void(f[0] = 1);
int m = n >> 1;
solve(m, f);
static int g[N];
for (int i = 0; i <= m; ++i) g[i] = f[i];
PolyMove(g, m + 1, m);
PolyMul(m + 1, f, m + 1, g, f);
if (n & 1) for (int i = n; ~i; --i)
f[i] = ((LL)(n - 1) * f[i] + (i ? f[i - 1] : 0)) % mod;
}
int main ()
{
init();
int n; read(n);
static int res[N];
solve(n, res);
for (int i = 0; i <= n; ++i)
write((res[i] + mod) % mod), putchar(' ');
return 0;
}