Blog of RuSun

OneProblemIsDifficultBecauseYouDontKnowWhyItIsDiffucult

SP3871 GCDEX - GCD Extreme

LuoGu: SP3871 GCDEX - GCD Extreme

GCDEX - GCD Extreme

先计算:
f(n)=x=1ny=1ngcd(x,y)=x=1ny=1nd|gcd(i,j)φ(d)=x=1ny=1nd|gcd(i,j)φ(d)=d=1nφ(d)nd2
考虑删去重复的部分。首先是 i=j 的情况,gcd(i,i)=i ,因此这部分重复的有 i=1ni ,即 n(n+1)/2 ,对于剩下的部分,因为 ij 可以交换,所以计算了两次,除以 2 即可。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 1e6 + 10;
int n;
bool vis[N];
LL cnt, primes[N];
LL phi[N], s[N];
void init()
{
phi[1] = 1;
for (int i = 2; i < N; i++)
{
if (!vis[i])
{
primes[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && i * primes[j] < N; j++)
{
vis[i * primes[j]] = true;
if (i % primes[j] == 0)
{
phi[i * primes[j]] = phi[i] * primes[j];
break;
}
phi[i * primes[j]] = phi[i] * phi[primes[j]];
}
}
for (int i = 1; i < N; i++)
s[i] = s[i - 1] + phi[i];
}
int main()
{
init();
while (~scanf("%lld", &n))
{
if (!n)
break;
LL res = 0;
for (int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
res += (s[r] - s[l - 1]) * (LL)(n / l) * (LL)(n / l);
}
printf("%lld\n", (res - (LL)n * (n + 1) / 2) / 2);
}
return 0;
}

Gitalk 加载中 ...