Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

SP26017 GCDMAT - GCD OF MATRIX

LuoGu: SP26017 GCDMAT - GCD OF MATRIX

SPOJ: GCDMAT - GCD OF MATRIX

$$
\begin {aligned}
f(n) = & \sum_{i = 1} ^ a \sum_{j = 1} ^ b [ gcd(i, j) = n ] \\
= & \sum_{i = 1} ^ {\frac a n} \sum_{j = 1} ^ {\frac b n} \sum_{d | gcd(i, j)} \mu(d) \\
= & \sum_{i = 1} ^ {\frac a n} \sum_{j = 1} ^ {\frac b n} \sum_{d | gcd(i, j)} \mu(d) \\
= & \sum_{d = 1} ^ {min({\frac a n}, {\frac b n})} \mu (d) \left \lfloor \frac a {dn} \right \rfloor \left \lfloor \frac b {dn} \right \rfloor \\
\end {aligned}
$$

容斥原理处理即可。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 5e4 + 10, mod = 1e9 + 7;
int n, m;
int cnt;
LL p[N], low[N], phi[N], sphi[N];
void init()
{
phi[1] = 1;
low[1] = 1;
for (int i = 1; i < N; i++)
{
if (!low[i])
{
p[++cnt] = i;
phi[i] = i - 1;
low[i] = i;
}
for (int j = 1; j <= cnt && i * p[j] < N; j++)
{
if (i % p[j] == 0)
{
if (low[i] == i)
phi[i * p[j]] = phi[i] * p[j];
else
phi[i * p[j]] = phi[i / low[i]] * phi[p[j] * low[i]];
low[i * p[j]] = low[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * phi[p[j]];
low[i * p[j]] = p[j];
}
}
for (int i = 1; i < N; i++)
sphi[i] = (sphi[i - 1] + phi[i]) % mod;
}
LL f(int a, int b)
{
LL res = 0;
for (int l = 1, r; l <= min(a, b); l = r + 1)
{
r = min(a / (a / l), b / (b / l));
res += (sphi[r] - sphi[l - 1]) * (LL)(a / l) * (LL)(b / l);
}
return res;
}
int main()
{
init();
int T;
scanf("%d%d%d", &T, &n, &m);
for (int a, b, c, d; T; T--)
{
scanf("%d%d%d%d", &a, &b, &c, &d);
printf("%lld\n", (f(c, d) - f(a - 1, d) - f(b - 1, c) + f(a - 1, b - 1)) % mod);
}
return 0;
}