Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

SP10707 COT2 - Count on a tree II

LuoGu: SP10707 COT2 - Count on a tree II

SPOJ: COT2 - Count on a tree II

树上莫队,使用欧拉序可以将树上转化为序列上的问题。对于一个数,如果出现了两次,就相当于删除。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
if (x < 0)
{
putchar('-');
x = ~x + 1;
}
if (x > 9)
write(x / 10);
putchar('0' + x % 10);
}
const int N = 4e4 + 10, M = N << 1, Q = 1e5 + 10, K = 18;
bool vis[N];
int n, m, len, w[N];
int res, cnt[N], ans[Q];
int stmp, s[M], fir[N], sec[N];
int idx, hd[N], nxt[M], edg[M];
namespace LCA
{
int lg[M];
int stmp, d[N], id[N], st[M][K];
void dfs(int x, int fa)
{
st[++stmp][0] = x;
d[x] = d[fa] + 1;
id[x] = stmp;
for (int i = hd[x]; ~i; i = nxt[i])
if (edg[i] != fa)
{
dfs(edg[i], x);
st[++stmp][0] = x;
}
}
int dmin(int x, int y)
{
return d[x] < d[y] ? x : y;
}
void init()
{
dfs(1, 0);
for (int i = 2; i <= stmp; i++)
lg[i] = lg[i >> 1] + 1;
for (int k = 1; (1 << k) <= stmp; k++)
for (int i = 1; i + (1 << k) - 1 <= stmp; i++)
st[i][k] = dmin(st[i][k - 1], st[i + (1 << k - 1)][k - 1]);
}
int lca(int x, int y)
{
x = id[x], y = id[y];
if (x > y)
swap(x, y);
int k = lg[y - x + 1];
return dmin(st[x][k], st[y - (1 << k) + 1][k]);
}
}
struct Query
{
int l, r, p, id;
friend bool operator<(const Query &x, const Query &y)
{
if (x.l / len != y.l / len)
return x.l < y.l;
return (x.l / len) & 1 ? (x.r < y.r) : (x.r > y.r);
}
} q[Q];
void add(int a, int b)
{
nxt[++idx] = hd[a];
hd[a] = idx;
edg[idx] = b;
}
void dfs(int x, int fa)
{
s[++stmp] = x;
fir[x] = stmp;
for (int i = hd[x]; ~i; i = nxt[i])
if (edg[i] != fa)
dfs(edg[i], x);
s[++stmp] = x;
sec[x] = stmp;
}
void add(int x)
{
vis[x] ^= 1;
if (!vis[x])
{
cnt[w[x]]--;
if (!cnt[w[x]])
res--;
}
else
{
if (!cnt[w[x]])
res++;
cnt[w[x]]++;
}
}
int main()
{
read(n), read(m);
vector<int> ws;
for (int i = 1; i <= n; i++)
{
read(w[i]);
ws.push_back(w[i]);
}
sort(ws.begin(), ws.end());
ws.erase(unique(ws.begin(), ws.end()), ws.end());
for (int i = 1; i <= n; i++)
w[i] = lower_bound(ws.begin(), ws.end(), w[i]) - ws.begin();
for (int i = 1; i <= n; i++)
hd[i] = -1;
for (int i = 1, u, v; i < n; i++)
{
read(u), read(v);
add(u, v);
add(v, u);
}
dfs(1, 0);
LCA::init();
for (int i = 0, a, b; i < m; i++)
{
read(a), read(b);
if (fir[a] > fir[b])
swap(a, b);
q[i].id = i;
int p = LCA::lca(a, b);
if (a == p)
q[i].l = fir[a], q[i].r = fir[b];
else
q[i].l = sec[a], q[i].r = fir[b], q[i].p = p;
}
len = max(1.0, stmp / sqrt(m));
sort(q, q + m);
for (int i = 0, l = 1, r = 0; i < m; i++)
{
while (r < q[i].r)
add(s[++r]);
while (l > q[i].l)
add(s[--l]);
while (r > q[i].r)
add(s[r--]);
while (l < q[i].l)
add(s[l++]);
if (q[i].p)
add(q[i].p);
ans[q[i].id] = res;
if (q[i].p)
add(q[i].p);
}
for (int i = 0; i < m; i++)
{
write(ans[i]);
puts("");
}
return 0;
}