Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

多项式全家桶

NTT, 求逆,积分微分,对数指数,快速幂,除法。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
flag |= c == '-';
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...Rest>
void read (Type &x, Rest &...y) { read(x); read(y...); }
template <class Type>
void write (Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 5e5 + 10, mod = 998244353, inv2 = mod + 1 >> 1;
int rev[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 1; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
void PolyMul (int n, int *f, int m, int *g, int nm, int *res)
{
int bit = 0;
while (1 << bit < n + m - 1) ++bit;
int tot = 1 << bit;
for (int i = n; i < tot; ++i) f[i] = 0;
for (int i = m; i < tot; ++i) g[i] = 0;
ntt(f, bit, 1), ntt(g, bit, 1);
for (int i = 0; i < tot; ++i)
res[i] = (LL)f[i] * g[i] % mod;
ntt(res, bit, -1);
for (int i = nm; i < tot; ++i) res[i] = 0;
}
void PolyInv(int n, int *x, int *g)
{
if (n == 1) return void(g[0] = binpow(x[0]));
int m = n + 1 >> 1;
int bit = 0;
while (1 << bit < n + m + m - 2) ++bit;
int tot = 1 << bit;
PolyInv(m, x, g);
for (int i = m; i < tot; ++i) g[i] = 0;
static int A[N];
for (int i = 0; i < n; ++i) A[i] = x[i];
for (int i = n; i < tot; ++i) A[i] = 0;
ntt(g, bit, 1), ntt(A, bit, 1);
for (int i = 0; i < tot; ++i)
g[i] = (2 - (LL)g[i] * A[i]) % mod * g[i] % mod;
ntt(g, bit, -1);
for (int i = n; i < tot; ++i) g[i] = 0;
}
void PolySqrt(int n, int *x, int *g)
{
if (n == 1) return void(g[0] = 1);
int m = n + 1 >> 1;
int bit = 0;
while (1 << bit < n + n - 1) ++bit;
int tot = 1 << bit;
PolySqrt(m, x, g);
for (int i = m; i < n; ++i) g[i] = 0;
static int A[N], B[N];
PolyInv(n, g, A);
for (int i = n; i < tot; ++i) A[i] = 0;
for (int i = 0; i < tot; ++i) B[i] = x[i];
for (int i = n; i < tot; ++i) B[i] = 0;
ntt(A, bit, 1), ntt(B, bit, 1), ntt(g, bit, 1);
for (int i = 0; i < tot; ++i)
g[i] = (g[i] + (LL)B[i] * A[i]) % mod * inv2 % mod;
ntt(g, bit, -1);
for (int i = n; i < tot; ++i) g[i] = 0;
}
void PolyDerivate(int n, int *x, int *g)
{
for (int i = 1; i < n; ++i)
g[i - 1] = (LL)x[i] * i % mod;
g[n - 1] = 0;
}
void PolyIntegrate(int n, int *x, int *g)
{
for (int i = 1; i < n; ++i)
g[i] = (LL)x[i - 1] * binpow(i) % mod;
g[0] = 0;
}
void PolyLn(int n, int *x, int *g)
{
static int A[N], B[N];
PolyDerivate(n, x, A);
PolyInv(n, x, B);
PolyMul(n, A, n, B, n, A);
PolyIntegrate(n, A, g);
}
void PolyExp(int n, int *x, int *g)
{
if (n == 1) return void(g[0] = 1);
int m = n + 1 >> 1;
PolyExp(m, x, g);
for (int i = m; i < n; ++i) g[i] = 0;
static int A[N];
PolyLn(n, g, A);
for (int i = 0; i < n; ++i)
A[i] = (x[i] - A[i]) % mod;
++A[0];
PolyMul(n, A, m, g, n, g);
}
void PolyBinpow(int n, int *x, int k, int *g)
{
static int A[N], B[N];
int t = 0;
while (t < n && !x[t]) ++t;
if ((LL)k * t >= n)
{
for (int i = 0; i < n; ++i) g[i] = 0;
return;
}
int s = binpow(x[t]);
for (int i = 0; i < n - t; ++i)
A[i] = (LL)x[i + t] * s % mod;
PolyLn(n - t, A, B);
for (int i = 0; i < n - t; ++i)
B[i] = (LL)B[i] * k % mod;
PolyExp(n - t, B, g);
s = binpow(x[t], k);
for (int i = n - 1; i >= k * t; --i)
g[i] = (LL)g[i - k * t] * s % mod;
for (int i = 0; i < k * t; ++i) g[i] = 0;
}
void PolyDiv(int n, int *x, int m, int *y, int *c, int *r)
{
int del = n - m + 1;
static int A[N], B[N];
for (int i = 0; i < m; ++i) B[i] = y[m - i - 1];
PolyInv(del, B, A);
for (int i = 0; i < n; ++i) B[i] = x[n - i - 1];
PolyMul(del, A, n, B, del, A);
for (int i = 0; i < del; ++i)
c[i] = A[del - i - 1];
for (int i = 0; i < del; ++i) A[i] = c[i];
for (int i = 0; i < m; ++i) B[i] = y[i];
PolyMul(del, A, m, B, n, A);
for (int i = 0; i < n; ++i)
r[i] = (x[i] - A[i]) % mod;
}

三模数NTT:

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...rest>
void read(Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write(Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
typedef __int128 L;
typedef long long LL;
const int N = 5e5 + 10, p = 1e9 + 7, p1 = 998244353, p2 = 1004535809, p3 = 469762049;
const L inf = (L)N * p * p, mul = (L)p1 * p2 * p3;
int binpow (int b, int k = p - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % p)
if (k & 1) res = (LL)res * b % p;
return res;
}
template <const int &mod>
struct NTT
{
int rev[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 0; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | ((i & 1) << bit - 1)) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
void PolyMul (int n, int *f, int m, int *g, int nm, int *w)
{
static int A[N], B[N];
for (int i = 0; i < n; ++i) A[i] = f[i] % mod;
for (int i = 0; i < m; ++i) B[i] = g[i] % mod;
int bit = 1;
while (n + m - 1 > 1 << bit) ++bit;
int tot = 1 << bit;
for (int i = n; i < tot; ++i) A[i] = 0;
for (int i = m; i < tot; ++i) B[i] = 0;
ntt(A, bit, 1), ntt(B, bit, 1);
for (int i = 0; i < tot; ++i)
w[i] = (LL)A[i] * B[i] % mod;
ntt(w, bit, -1);
for (int i = 0; i < nm; ++i) w[i] = (w[i] + mod) % mod;
for (int i = nm; i < tot; ++i) w[i] = 0;
}
};
NTT <p1> q1; NTT <p2> q2; NTT <p3> q3;
const L k1 = (L)p2 * p3 * q1.binpow((LL)p2 * p3 % p1), k2 = (L)p1 * p3 * q2.binpow((LL)p1 * p3 % p2), k3 = (L)p1 * p2 * q3.binpow((LL)p1 * p2 % p3);
int CRT (int x1, int x2, int x3)
{
L res = (x1 * k1 + x2 * k2 + x3 * k3) % mul;
if (res >= inf) res -= mul;
if (res <= -inf) res += mul;
return res % p;
}
void PolyMul (int n, int *f, int m, int *g, int nm, int *w)
{
static int A[N], B[N], C[N];
q1.PolyMul(n, f, m, g, nm, A);
q2.PolyMul(n, f, m, g, nm, B);
q3.PolyMul(n, f, m, g, nm, C);
for (int i = 0; i < nm; ++i)
w[i] = CRT(A[i], B[i], C[i]);
}