Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P8367 [LNOI2022] 盒

P8367 [LNOI2022] 盒

一些前置组合数问题

  • $$
    m \binom n m = (n - m + 1) \binom n {m - 1}
    $$

    证明方法为将组合数拆为阶乘。

  • $$
    \forall 1 \le i < n, \binom {n + m} n = \sum _ {j = 0} ^ m \binom {i + j} j \binom {n + m - i - j - 1} {m - j}
    $$

    考虑组合数意义,等式左侧可以理解为从 $(0, 0)$ 走向 $(n, m)$ 每次可以使得横坐标加一,或者纵坐标加一。考虑分解这个过程,对于每个纵坐标,横坐标从 $i$ 增加到 $i + 1$ 的过程,即 $(0, 0) \to (i, j)$ 与 $(i + 1, j) \to (n, m)$ 方案数相乘。

  • $$
    \forall 1 \le i < n, 1 \le s < m, \sum _ {j = 0} ^ s \binom {i + j} j \binom {n + m - i - j - 1} {m - j} = \sum _ {j = i + 1} ^ n \binom {j + s} s \binom {n + m - j - s - 1} {n - j}
    $$

    左式和上一个结论的右式相似。现在有了范围的限制,即横坐标从 $i$ 增加到 $i + 1$ 的过程,只能从 $[0, s]$ 纵坐标通过,这意味着要超过 $s$ ,只能在后面实现,即 $(0, 0) \to (j, s)$ 与 $(j, s + 1) \to (n, m)$ 的方案数相乘。

考虑拆贡献:
$$
ANS = \sum _ {i = 1} ^ {n - 1} w _ i \sum _ {j = 0} ^ m\left | s _ i - j\right | Div(j, i) Div(m - j, n - i)
$$
即枚举 $b _ i$ 的前缀和 $j$ ,前面 $i$ 分 $j$ 个,后面 $n - i$ 分 $m - j$ 个,考虑插板法,可以知道
$$
Div (n, m) = \binom {n + m - 1}{m - 1}
$$
所以有:
$$
\begin {aligned}
ANS & = \sum _ {i = 1} ^ {n - 1} w _ i \sum _ {j = 0} ^ m \left | s _ i - j\right | \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
& = \sum _ {i = 1} ^ {n - 1} w _ i (2\sum _ {j = 0} ^ {s _ i}(s _ i - j) \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} + \sum _ {j = 0} ^ m (j - s _ i)\binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1})
\end {aligned}
$$
依次考虑:
$$
\begin {aligned}
A = & \sum _ {j = 0} ^ m (j - s _ i)\binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
= & \sum _ {j = 0} ^ m j\binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} - s _ i\sum _ {j = 0} ^ m\binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
= & \sum _ {j = 0} ^ m i \binom {i + j - 1}{i} \binom {n + m - i - j - 1} {n - i - 1} - s _ i\sum _ {j = 0} ^ m \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
= & \sum _ {j = 1} ^ m i \binom {i + j - 1}{i} \binom {n + m - i - j - 1} {n - i - 1} - s _ i\sum _ {j = 0} ^ m \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
= & i \sum _ {j = 0} ^ {m - 1} \binom {i + j}{i} \binom {n + m - i - j - 2} {n - i - 1} - s _ i\sum _ {j = 0} ^ m \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
= & i \binom {n + m - 1} n - s _ i \binom {n + m - 1} m
\end {aligned}
$$

$$
\begin {aligned}
B = & \sum _ {j = 0} ^ {s _ i}(s _ i - j) \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
= & s _ i\sum _ {j = 0} ^ {s _ i} \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} - \sum _ {j = 0} ^ {s _ i} j \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} \\
= & s _ i\sum _ {j = 0} ^ {s _ i} \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1} - i \sum _ {j = 0} ^ {s _ i} \binom {i + j - 1}{i} \binom {n + m - i - j - 1} {n - i - 1} \\
= & s _ i\sum _ {j = 0} ^ {s _ i} \binom {i + j - 1}{i - 1} \binom {n + m - i - j - 1} {n - i - 1}- i\sum _ {j = 0} ^ {s _ i - 1} \binom {i + j}{j} \binom {n + m - i - j - 2} {m - j - 1} \\
= & s _ i\sum _ {j = i} ^ {n - 1} \binom {j + s _ i}{j} \binom {n + m - j - s _ i - 2}{n - j - 1}- i \sum _ {j = i + 1} ^ n \binom {j + s _ i - 1} j \binom {n + m - j - s _ i - 1}{n - j} \\
\end {aligned}
$$

至此可以同时维护 $4$ 个值实现 $O(1)$ 转移了。均摊复杂度 $O(n + m)$ 。

对于 $A$ 式,每个 $i$ 的变化和 $s _ i$ 的变化很好维护。考虑 $B$ 式,即 $f$ 为答案 $A + 2B$ ,即 $g _ 0$ 为 $s _ i$ 增加时 $B$ 中贡献的数,$g _ 1$ 为 $i$ 增加时 $B$ 中减少的数。考虑如何维护 $g _ 0, g _ 1$ 。那么最开始的时候,有 $g _ 0 = \binom {n + m - 2} m, g _ 1 = 0$ ,可以推出 $g _ 0, g _ 1$ 的变化。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include <cstdio>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...rest>
void read(Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write(Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
typedef long long LL;
const int N = 3e6 + 10, mod = 998244353;
void adj (int &x) { x += x >> 31 & mod; }
struct ModInt
{
int x;
ModInt (int _ = 0) { adj(x = _); }
int operator () () const { return x; }
ModInt operator - () const { return ModInt(-x); }
ModInt& operator += (const ModInt &_) { adj(x += _.x - mod); return *this; }
ModInt& operator -= (const ModInt &_) { adj(x -= _.x); return *this; }
ModInt& operator *= (const ModInt &_) { x = (LL)x * _.x % mod; return *this; }
ModInt operator + (const ModInt &_) const { ModInt res = x; res += _; return res; }
ModInt operator - (const ModInt &_) const { ModInt res = x; res -= _; return res; }
ModInt operator * (const ModInt &_) const { ModInt res = x; res *= _; return res; }
} f, g, g1, inv[N], fact[N], ifact[N];
void init ()
{
inv[1] = 1;
for (int i = 2; i < N; ++i)
inv[i] = inv[mod % i] * (-mod / i);
fact[0] = ifact[0] = 1;
for (int i = 1; i < N; ++i)
{
fact[i] = fact[i - 1] * i;
ifact[i] = ifact[i - 1] * inv[i];
}
}
ModInt C (int a, int b){ return a < b ? 0 : fact[a] * ifact[a - b] * ifact[b]; }
int n, m, p, q, v[N], w[N];
void AddQ ()
{
f += g * 2 - C(n + m - 1, m);
g += C(p + q, p - 1) * C(n + m - p - q - 2, n - p - 1);
g1 += C(p + q, p) * C(n + m - p - q - 2, n - p - 1);
++q;
}
void AddP ()
{
f += C(n + m - 1, n) - g1 * 2;
g -= C(p + q, p) * C(n + m - p - q - 2, n - p - 1);
g1 -= C(p + q, p + 1) * C(n + m - p - q - 2, n - p - 1);
++p;
}
int main ()
{
init();
int T; read(T);
while (T--)
{
read(n);
m = 0;
for (int i = 1; i <= n; ++i)
read(v[i]), m += v[i];
p = 1, q = 0;
f = C(n + m - 1, n), g = C(n + m - 2, m), g1 = 0;
ModInt res;
for (int i = 1, t; i < n; ++i)
{
read(t);
for (int j = 1; j <= v[i]; ++j) AddQ();
res += f * t;
AddP();
}
write(res()), puts("");
}
return 0;
}