Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P7409 SvT

P7409 SvT

建出后缀树。将给定的点建出虚树。在每个点考虑这个点成为 LCA 的组数,贡献为其深度。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <cstdio>
#include <vector>
#include <algorithm>
#define pb push_back
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0';
flag && (x = ~x + 1);
}
template <class Type, class ...rest>
void read (Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write (Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 1e6 + 10, M = 22;
LL ans;
char str[N];
int top, stk[N];
vector <int> g[N], e[N];
int n, q, last = 1, cnt = 1, h[N], sz[N], s[N];
int lg[N << 1], d[N], stmp, id[N], st[N << 1][M];
struct Node { int p, len, nxt[26]; } tr[N];
void extend (int c)
{
int p = last, np = ++cnt;
tr[np].len = tr[p].len + 1;
for (; p && !tr[p].nxt[c]; p = tr[p].p) tr[p].nxt[c] = np;
last = np;
if (!p) return void(tr[np].p = 1);
int q = tr[p].nxt[c];
if (tr[q].len == tr[p].len + 1) return void(tr[np].p = q);
int nq = ++cnt;
tr[nq] = tr[q], tr[nq].len = tr[p].len + 1;
tr[q].p = tr[np].p = nq;
for (; p && tr[p].nxt[c] == q; p = tr[p].p) tr[p].nxt[c] = nq;
}
int dmin (int a, int b) { return d[a] < d[b] ? a : b; }
void dfs (int u)
{
st[id[u] = ++stmp][0] = u;
for (int v : g[u])
d[v] = d[u] + 1, dfs(v), st[++stmp][0] = u;
}
void init ()
{
dfs(1);
for (int i = 2; i <= stmp; ++i) lg[i] = lg[i >> 1] + 1;
for (int k = 0; k < lg[stmp]; ++k)
for (int i = stmp + 1 - (1 << k + 1); i; --i)
st[i][k + 1] = dmin(st[i][k], st[i + (1 << k)][k]);

}
int lca (int a, int b)
{
if ((a = id[a]) > (b = id[b])) swap(a, b);
int k = lg[b - a + 1];
return dmin(st[a][k], st[b - (1 << k) + 1][k]);
}
void dp (int u)
{
for (int v : e[u])
dp(v), sz[u] += sz[v], ans -= sz[v] * (sz[v] - 1ll) * tr[u].len;
ans += sz[u] * (sz[u] - 1ll) * tr[u].len;
}
int main ()
{
read(n, q);
scanf("%s", str);
for (int i = n - 1; ~i; --i)
s[i + 1] = cnt + 1, extend(str[i] - 'a');
for (int i = 2; i <= cnt; ++i) g[tr[i].p].pb(i);
init();
for (int k; q; --q)
{
read(k);
for (int i = 1; i <= k; ++i) read(h[i]), h[i] = s[h[i]];
sort(h + 1, h + k + 1, [&](int a, int b) { return id[a] < id[b]; });
k = unique(h + 1, h + k + 1) - (h + 1);
stk[top = 1] = 1, e[1].clear(), sz[1] = 0;
for (int i = 1; i <= k; ++i)
{
int t = lca(h[i], stk[top]);
if (t ^ stk[top])
{
for (; id[t] < id[stk[top - 1]]; --top)
e[stk[top - 1]].pb(stk[top]);
if (id[t] > id[stk[top - 1]])
e[t].clear(), e[t].pb(stk[top]), stk[top] = t, sz[t] = 0;
else e[stk[top - 1]].pb(stk[top]), --top;
}
stk[++top] = h[i], e[h[i]].clear(), sz[h[i]] = 1;
}
for (; top > 1; --top) e[stk[top - 1]].pb(stk[top]);
ans = 0; dp(1); write(ans >> 1), puts("");
}
return 0;
}