Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P6810 「MCOI-02」Convex Hull 凸包

P6810 「MCOI-02」Convex Hull 凸包

推式子,不妨设 $n \le m$ :
$$
\begin {aligned}
& \sum _ {i = 1} ^ n \sum _ {j = 1} ^ m d(i) d(j) d((i, j)) \\
= & \sum _ {x = 1} ^ {n} d(x) \sum _ {i = 1} ^ n \sum _ {j = 1} ^ m d(i) d(j) [(i, j) = x] \\
= & \sum _ {x = 1} ^ {n} d(x) \sum _ {i = 1} ^ {\left \lfloor \frac n x \right \rfloor} \sum _ {j = 1} ^ {\left \lfloor \frac m x \right \rfloor} d(ix) d(jx) [(i, j) = 1] \\
= & \sum _ {x = 1} ^ {n} d(x) \sum _ {i = 1} ^ {\left \lfloor \frac n x \right \rfloor} \sum _ {j = 1} ^ {\left \lfloor \frac m x \right \rfloor} d(ix) d(jx) \sum _ {y | i \wedge y | j} \mu(y) \\
= & \sum _ {x = 1} ^ {n} d(x) \sum _ {y = 1} ^ {\left \lfloor \frac n x \right \rfloor} \mu(y) \sum _ {i = 1} ^ {\left \lfloor \frac n {xy} \right \rfloor} \sum _ {j = 1} ^ {\left \lfloor \frac m {xy} \right \rfloor} d(ixy) d(jxy)
\end {aligned}
$$
令 $T = xy$ ,则:
$$
\begin {aligned}
& \sum _ {T = 1} ^ n \sum _ {x | T} d(x) \mu(\frac T x) \sum _ {i = 1} ^ {\left \lfloor \frac n T \right \rfloor} d(iT) \sum _ {j = 1} ^ {\left \lfloor \frac m T \right \rfloor} d(jT) \\
= & \sum _ {T = 1} ^ n d * \mu(T) \sum _ {i = 1} ^ {\left \lfloor \frac n T \right \rfloor} d(iT) \sum _ {j = 1} ^ {\left \lfloor \frac m T \right \rfloor} d(jT) \\
= & \sum _ {T = 1} ^ n \sum _ {i = 1} ^ {\left \lfloor \frac n T \right \rfloor} d(iT) \sum _ {j = 1} ^ {\left \lfloor \frac m T \right \rfloor} d(jT) \\
\end {aligned}
$$
注意到 $\displaystyle \sum _ {i = 1} ^ {\left \lfloor \frac n T \right \rfloor} d(iT)$ 与 $\displaystyle \sum _ {j = 1} ^ {\left \lfloor \frac m T \right \rfloor} d(jT)$ 是互相独立的,因此只有两层循环,复杂度为 $O(n \log n)$ 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 2e6 + 10;
int n, m, mod;
int cnt, p[N], d[N], low[N];
void init()
{
d[1] = 1;
low[1] = 1;
for (int i = 2; i < N; i++)
{
if (!low[i])
{
p[++cnt] = i;
d[i] = 2;
low[i] = i;
}
for (int j = 1; j <= cnt && i * p[j] < N; j++)
{
if (i % p[j] == 0)
{
if (low[i] == i)
d[i * p[j]] = d[i] + 1;
else
d[i * p[j]] = d[i / low[i]] * d[p[j] * low[i]];
low[i * p[j]] = low[i] * p[j];
break;
}
d[i * p[j]] = d[i] * d[p[j]];
low[i * p[j]] = p[j];
}
}
}
int main()
{
scanf("%d%d%d", &n, &m, &mod);
if (n > m)
swap(n, m);
init();
int res = 0;
for (int i = 1; i <= n; i++)
{
int x = 0, y = 0;
for (int j = 1; j <= n / i; j++)
x = ((LL)x + d[i * j]) % mod;
for (int j = 1; j <= m / i; j++)
y = ((LL)y + d[i * j]) % mod;
res = (res + (LL)x * y % mod) % mod;
}
printf("%d", res);
return 0;
}