| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 
 | #include <cstdio>#include <algorithm>
 using namespace std;
 template <class Type>
 void read (Type &x)
 {
 char c;
 bool flag = false;
 while ((c = getchar()) < '0' || c > '9')
 flag |= c == '-';
 x = c - '0';
 while ((c = getchar()) >= '0' && c <= '9')
 x = (x << 3) + (x << 1) + c - '0';
 if (flag) x = ~x + 1;
 }
 template <class Type, class ...Rest>
 void read (Type &x, Rest &...y) { read(x); read(y...); }
 template <class Type>
 void write (Type x)
 {
 if (x < 0) putchar('-'), x = ~x + 1;
 if (x > 9) write(x / 10);
 putchar('0' + x % 10);
 }
 typedef long long LL;
 const int N = 1e6 + 10, mod = 998244353, inv2 = mod + 1 >> 1;
 int rev[N];
 int binpow (int b, int k = mod - 2)
 {
 int res = 1;
 for (; k; k >>= 1, b = (LL)b * b % mod)
 if (k & 1) res = (LL)res * b % mod;
 return res;
 }
 void ntt (int *x, int bit, int op)
 {
 int tot = 1 << bit;
 for (int i = 1; i < tot; ++i)
 if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
 swap(x[rev[i]], x[i]);
 for (int mid = 1; mid < tot; mid <<= 1)
 {
 int w1 = binpow(3, (mod - 1) / (mid << 1));
 if (!~op) w1 = binpow(w1);
 for (int i = 0; i < tot; i += mid << 1)
 for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
 {
 int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
 x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
 }
 }
 if (~op) return;
 int itot = binpow(tot);
 for (int i = 0; i < tot; ++i)
 x[i] = (LL)x[i] * itot % mod;
 }
 void PolyMul (int n, int *f, int m, int *g, int nm, int *res)
 {
 int bit = 0;
 while (1 << bit < n + m - 1) ++bit;
 int tot = 1 << bit;
 for (int i = n; i < tot; ++i) f[i] = 0;
 for (int i = m; i < tot; ++i) g[i] = 0;
 ntt(f, bit, 1), ntt(g, bit, 1);
 for (int i = 0; i < tot; ++i)
 res[i] = (LL)f[i] * g[i] % mod;
 ntt(res, bit, -1);
 for (int i = nm; i < tot; ++i) res[i] = 0;
 }
 void PolyInv(int n, int *x, int *g)
 {
 if (n == 1) return void(g[0] = binpow(x[0]));
 int m = n + 1 >> 1;
 int bit = 0;
 while (1 << bit < n + m + m - 2) ++bit;
 int tot = 1 << bit;
 PolyInv(m, x, g);
 for (int i = m; i < tot; ++i) g[i] = 0;
 static int A[N];
 for (int i = 0; i < n; ++i) A[i] = x[i];
 for (int i = n; i < tot; ++i) A[i] = 0;
 ntt(g, bit, 1), ntt(A, bit, 1);
 for (int i = 0; i < tot; ++i)
 g[i] = (2 - (LL)g[i] * A[i]) % mod * g[i] % mod;
 ntt(g, bit, -1);
 for (int i = n; i < tot; ++i) g[i] = 0;
 }
 void PolyCalc (int n, int *g)
 {
 if (n == 1) return void(g[0] = 1);
 int m = n + 1 >> 1;
 PolyCalc(m, g);
 int bit = 0;
 while (1 << bit < n + n - 1) ++bit;
 int tot = 1 << bit;
 static int A[N], B[N], C[N], D[N];
 for (int i = 0; i < tot; ++i)
 A[i] = i % 2 ? 0 : g[i / 2];
 for (int i = 0; i < tot; ++i)
 B[i] = i % 3 ? 0 : g[i / 3];
 for (int i = 0; i < m; ++i) C[i] = g[i];
 for (int i = m; i < tot; ++i) C[i] = 0;
 ntt(C, bit, 1), ntt(A, bit, 1), ntt(B, bit, 1);
 for (int i = 0; i < tot; ++i)
 {
 D[i] = ((LL)C[i] * C[i] % mod * C[i] % mod + 3ll * A[i] * C[i] % mod + 2 * B[i]) % mod;
 A[i] = (3ll * C[i] * C[i] % mod + 3ll * A[i]) % mod;
 }
 ntt(D, bit, -1), ntt(A, bit, -1);
 for (int i = n - 1; i; --i)
 D[i] = (D[i - 1] - 6ll * g[i]) % mod, A[i] = A[i - 1];
 D[0] = (6 - 6 * g[0]) % mod, A[0] = -6;
 PolyInv(n, A, B);
 PolyMul(n, D, n, B, n, A);
 for (int i = 0; i < n; ++i) (g[i] -= A[i]) %= mod;
 }
 int main ()
 {
 static int n, A[N], B[N], C[N];
 read(n); ++n;
 PolyCalc(n, A);
 for (int i = 0; i < n; ++i) B[i] = C[i] = A[i];
 PolyMul(n, A, n, B, n, A);
 for (int i = n - 2; ~i; --i)
 A[i + 1] = (LL)inv2 * (A[i] + (i & 1 ? 0 : C[i >> 1])) % mod;
 A[0] = 0;
 for (int i = 0; i < n; ++i) B[i] = C[i] = A[i];
 PolyMul(n, A, n, B, n, A);
 for (int i = n - 1; i; --i)
 A[i] = (LL)inv2 * (A[i] + (i & 1 ? 0 : C[i >> 1])) % mod;
 A[0] = 0;
 for (int i = 2; i < n; ++i)
 write((A[i] + mod) % mod), puts("");
 return 0;
 }
 
 |