Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P5850 calc加强版

P5850 calc加强版

两个重要的展开式:

$$
e ^ {f(x)} = \sum _ {i = 1} \frac {f(x) ^ i} {i!}
$$

$$
-\ln (1 - f(x)) = \sum _ {i = 1} \frac {f(x) ^ i} i
$$

现在如果不考虑选择的 $n$ 个数的顺序那么有(如果考虑,只需要乘 $n!$ 即可):

$$
\begin {aligned}
ANS & = \prod _ {i = 1} ^ m (1 + ix) \\
& = e ^ {\sum _ {i = 1} ^ m \ln (1 + ix)}
\end {aligned}
$$

根据 $\ln$ 的展开式:

$$
\begin {aligned}
& \ln (1 + ix)\\
= & -(-\ln (1 - (- ix))) \\
= & -\sum _ {k = 1} \frac {(-ix) ^ k} k \\
= & \sum _ {k = 1} \frac {(-1) ^ {k + 1} i ^ k} k x ^ k
\end {aligned}
$$

那么

$$
\begin {aligned}
& \sum _ {i = 1} ^ m \ln (1 + ix) \\
= & \sum _ {i = 1} ^ m \sum _ {k = 1} \frac {(-1) ^ {k + 1} i ^ k} k x ^ k \\
= & \sum _ {k = 1} \frac {(-1) ^ {k + 1} \sum _ {i = 1} ^ m i ^ k} k x ^ k
\end {aligned}
$$

考虑如何快速计算 $\sum _ {i = 0} ^ m i ^ k$ 。考虑构造 EGF :

$$
\begin {aligned}
& \sum _ {k = 0} \sum _ {i = 0} ^ m i ^ k \frac {x ^ k} {k!} \\
= & \sum _ {i = 0} ^ m\sum _ {k = 0} \frac {(ix) ^ k} {k!} \\
= & \sum _ {i = 0} ^ m e ^ {ix} \\
= & \frac {e ^ {(m + 1)x} - 1}{e ^ x - 1}
\end {aligned}
$$

注意一些细节,对于 $k > 0$ ,$0 ^ k = 0$ ,因此这里多算的 $i = 0$ 没有影响。而 $e ^ 0 - 1 = 0$ ,这意味着分子的常数项为 $0$ ,无法直接求逆,但是注意到分母的常数项也为 $0$ ,因此直接同时除以 $x$ 。

卡常。$e ^ x$ 和 $e ^ {(m + 1)x} $ 需要手动展开算。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
flag |= c == '-';
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...Rest>
void read (Type &x, Rest &...y) { read(x); read(y...); }
template <class Type>
void write (Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 3e6 + 10, mod = 998244353, inv2 = mod + 1 >> 1;
int rev[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 1; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
void PolyMul (int n, int *f, int m, int *g, int nm, int *res)
{
int bit = 0;
while (1 << bit < n + m - 1) ++bit;
int tot = 1 << bit;
for (int i = n; i < tot; ++i) f[i] = 0;
for (int i = m; i < tot; ++i) g[i] = 0;
ntt(f, bit, 1), ntt(g, bit, 1);
for (int i = 0; i < tot; ++i)
res[i] = (LL)f[i] * g[i] % mod;
ntt(res, bit, -1);
for (int i = nm; i < tot; ++i) res[i] = 0;
}
void PolyInv(int n, int *x, int *g)
{
if (n == 1) return void(g[0] = binpow(x[0]));
int m = n + 1 >> 1;
int bit = 0;
while (1 << bit < n + m + m - 2) ++bit;
int tot = 1 << bit;
PolyInv(m, x, g);
for (int i = m; i < tot; ++i) g[i] = 0;
static int A[N];
for (int i = 0; i < n; ++i) A[i] = x[i];
for (int i = n; i < tot; ++i) A[i] = 0;
ntt(g, bit, 1), ntt(A, bit, 1);
for (int i = 0; i < tot; ++i)
g[i] = (2 - (LL)g[i] * A[i]) % mod * g[i] % mod;
ntt(g, bit, -1);
for (int i = n; i < tot; ++i) g[i] = 0;
}
void PolyDerivate(int n, int *x, int *g)
{
for (int i = 1; i < n; ++i)
g[i - 1] = (LL)x[i] * i % mod;
g[n - 1] = 0;
}
void PolyIntegrate(int n, int *x, int *g)
{
for (int i = 1; i < n; ++i)
g[i] = (LL)x[i - 1] * binpow(i) % mod;
g[0] = 0;
}
void PolyLn(int n, int *x, int *g)
{
static int A[N], B[N];
PolyDerivate(n, x, A);
PolyInv(n, x, B);
PolyMul(n, A, n, B, n, A);
PolyIntegrate(n, A, g);
}
void PolyExp(int n, int *x, int *g)
{
if (n == 1) return void(g[0] = 1);
int m = n + 1 >> 1;
PolyExp(m, x, g);
for (int i = m; i < n; ++i) g[i] = 0;
static int A[N];
PolyLn(n, g, A);
for (int i = 0; i < n; ++i)
A[i] = (x[i] - A[i]) % mod;
++A[0];
PolyMul(n, A, m, g, n, g);
}
int main ()
{
static int n, m, A[N], B[N], C[N];
read(m, n); ++n;
for (int i = 1, t = 1; i <= n; t = (LL)t * ++i % mod)
{
A[i - 1] = (LL)binpow(t) * binpow(m + 1, i) % mod;
B[i - 1] = binpow(t);
}
PolyInv(n, B, C), PolyMul(n, A, n, C, n, A);
A[0] = 0;
for (int i = 1, t = 1; i < n; t = (LL)t * ++i % mod)
A[i] = (LL)A[i] * t % mod * binpow(i) * (i & 1 ? 1 : -1) % mod;
PolyExp(n, A, B);
for (int i = 1, t = 1; i < n; t = (LL)t * ++i % mod)
write(((LL)t * B[i] % mod + mod) % mod), puts("");
return 0;
}