Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P5667 拉格朗日插值2

P5667 拉格朗日插值2

上拉插。

$$
\begin {aligned}
f (i + m) = \sum _ {j = 0} ^ n f(j) \prod _ {k \neq j} \frac {(i + m - k)} { (j - k)} \\
& = \prod _ {j = m + i - n} ^ {m + i} j \sum _ {j = 0} ^ n \frac {f(j)} {(m + i - j) (-1) ^ {n - j} j!(n - j)!}
\end {aligned}
$$

其中 $\frac {f(j)} {(-1) ^ {n - j} j!(n - j)!}$ 是关于 $j$ 的项,$\frac 1 {(m + i - j)}$ 是关于 $i - j$ 的项,直接卷积即可。注意到 $i - j$ 可能小于 $0$ ,所以向右平移 $n$ 个长度。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0';
flag && (x = ~x + 1);
}
template <class Type, class ...rest>
void read (Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write (Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 1e6 + 10, mod = 998244353;
int n, m, rev[N], fact[N], ifact[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 1; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
void PolyMul (int n, int *f, int m, int *g, int nm, int *res)
{
int bit = 0;
while (1 << bit < n + m - 1) ++bit;
int tot = 1 << bit;
for (int i = n; i < tot; ++i) f[i] = 0;
for (int i = m; i < tot; ++i) g[i] = 0;
ntt(f, bit, 1), ntt(g, bit, 1);
for (int i = 0; i < tot; ++i)
res[i] = (LL)f[i] * g[i] % mod;
ntt(res, bit, -1);
for (int i = nm; i < tot; ++i) res[i] = 0;
}
void init ()
{
fact[0] = 1;
for (int i = 1; i < N; ++i)
fact[i] = (LL)fact[i - 1] * i % mod;
ifact[N - 1] = binpow(fact[N - 1]);
for (int i = N - 1; i; --i)
ifact[i - 1] = (LL)ifact[i] * i % mod;
}
int main ()
{
init();
static int A[N], B[N];
read(n, m);
for (int i = 0; i <= n; ++i)
{
read(A[i]);
A[i] = (n - i & 1 ? -1ll : 1ll) * ifact[i] * ifact[n - i] % mod * A[i] % mod;
}
for (int i = 0; i <= 2 * n; ++i) B[i] = binpow(m - n + i);
PolyMul(n + 1, A, 2 * n + 1, B, 2 * n + 1, A);
int k = 1;
for (int i = 0; i <= n; ++i) k = (LL)k * (m - i) % mod;
for (int i = 0; i <= n; ++i)
{
write(((LL)A[i + n] * k % mod + mod) % mod), putchar(' ');
k = (LL)(m + i + 1) * binpow(m + i - n) % mod * k % mod;
}
return 0;
}