Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P5518 [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题

P5518 [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题

记 $s _ n = \sum _ {i = 1} ^ n i $ 。

Type 0

$\mathrm {lcm} (i, j) = \frac {ij} {gcd(i, j)}$ 。将分子分母每个部分分开计算,$X(A, B, C) = \prod _ {i = 1} ^ A \prod _ {j = 1} ^ B \prod _ {k = 1} ^ C i$ ,$Y(A, B, C) = \prod _ {i = 1} ^ A \prod _ {j = 1} ^ B \prod _ {k = 1} ^ C (i, j)$ 。那么答案为 $\frac {X(A, B, C) X(B, A, C)} {Y(A, B, C) Y(A, C, B)}$ 。

$$X(A, B, C) = (A!) ^ {BC}$$

$$
\begin {aligned}
Y(A, B, C) & = \prod _ {i = 1} ^ A \prod _ {j = 1} ^ B \prod _ {k = 1} ^ C (i, j)\\
& = (\prod _ {i = 1} ^ A \prod _ {j = 1} ^ B (i, j)) ^ C \\
& = (\prod _ {d = 1} ^ n \prod _ {i = 1} ^ A \prod _ {j = 1} ^ B d ^ {[(i, j) = d]}) ^ C \\
& = (\prod _ {d = 1} ^ n d ^ {\sum _ {i = 1} ^ A \sum _ {j = 1} ^ B [(i, j) = d]}) ^ C \\
& = (\prod _ {d = 1} ^ n d ^ {\sum _ {k = 1} ^ {\lfloor \frac n d \rfloor } \mu(k) {\lfloor \frac A {kd} \rfloor }{\lfloor \frac B {kd} \rfloor }}) ^ C \\
& = (\prod _ {T = 1} ^ n (\prod _ {d | T} d ^ {\mu(\frac T d )}) ^ {\lfloor \frac A T \rfloor \lfloor \frac B T \rfloor}) ^ C
\end {aligned}
$$

其中 $\prod _ {d | T} d ^ {\mu(\frac T d )}$ 可以用 $n \ln n$ 时间预处理,做前缀积,可以数论分块。

Type 1

$$X(A, B, C) = \prod _ {i = 1} ^ A \prod _ {j = 1} ^ B \prod _ {k = 1} ^ C i ^ {ijk} = (\prod _ {i = 1} ^ A i ^ i) ^ {s_ B s _ C} $$

$$
\begin {aligned}
Y(A, B, C) & = \prod _ {i = 1} ^ A \prod _ {j = 1} ^ B \prod _ {k = 1} ^ C (i, j) ^ {ijk} \\
& = (\prod _ {i = 1} ^ A \prod _ {j = 1} ^ B (i, j) ^ {ij}) ^ {s _ C} \\
& = (\prod _ {d = 1} ^ n \prod _ {i = 1} ^ A \prod _ {j = 1} ^ B d ^ {ij[(i, j) = d]}) ^ {s _ C} \\
& = (\prod _ {d = 1} ^ n d ^ {\sum _ {i = 1} ^ A \sum _ {j = 1} ^ B ij[(i, j) = d]}) ^ {s _ C} \\
& = (\prod _ {d = 1} ^ n d ^ {\sum _ {k = 1} ^ {\lfloor \frac n d \rfloor } \mu(k) d ^ 2 k ^ 2{s _ {\lfloor \frac A {kd} \rfloor} }{s _ {\lfloor \frac B {kd} \rfloor} }}) ^ {s _ C} \\
& = (\prod _ {T = 1} ^ n (\prod _ {d | T} d ^ {\mu(\frac T d ) T ^ 2}) ^ { s _ {\lfloor \frac A {kd} \rfloor} s _ {\lfloor \frac B {kd} \rfloor} }) ^ {s _ C}
\end {aligned}
$$

其中 $\prod _ {d | T} d ^ {\mu(\frac T d ) T ^ 2}$ 可以用 $n \ln n$ 时间预处理,做前缀积,可以数论分块。

Type 2

$$
\begin {aligned}
\prod_{i = 1}^A \prod_{j = 1}^B \prod_{k = 1}^C (\frac{\mathrm{lcm}(i, j)}{(i, k)} )^{(i, j, k)} = \prod _ {d = 1} ^ n (\prod _ {i = 1} ^ {\lfloor \frac A d \rfloor}\prod _ {i = 1} ^ {\lfloor \frac B d \rfloor} \prod _ {k = 1} ^ { \lfloor \frac C d \rfloor} \frac{\mathrm{lcm}(i, j)}{(i, k)} ) ^ {\varphi (d)}
\end {aligned}
$$

中间部分为 Type 0 答案,数论分块套数论分块,复杂度 $O(n ^ {\frac 3 4} \log ^ 2 p)$ 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0';
flag && (x = ~x + 1);
}
template <class Type, class ...rest>
void read (Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write (Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 1e5 + 10;
bool vis[N];
struct FastMod
{
typedef unsigned long long ULL;
typedef unsigned __int128 UL;
bool flag;
int d, l; ULL m;
FastMod () {}
FastMod (int _d) : d(_d)
{
l = 64 - __builtin_clzll(d - 1);
const UL i = 1;
UL M = ((i << (64 + l)) + (i << l)) / d;
if (M < (i << 64)) flag = 1, m = M;
else flag = 0, m = M - (i << 64);
}
friend ULL operator/(ULL n, const FastMod &m)
{
if (m.flag) return (UL)n * m.m >> 64 >> m.l;
ULL t = (UL)n * m.m >> 64;
return (((n - t) >> 1) + t) >> (m.l - 1);
}
template <class Type>
friend Type operator % (Type n, const FastMod &m)
{
bool flag = false;
if (n < 0) flag = true, n = ~n + 1;
n -= n / m * m.d;
if (flag) n = ~n + 1;
return n;
}
} mod, _mod;
int Mod;
int cnt, p[N], mu[N], phi[N], s[N];
int binpow (int b, int k = Mod - 2)
{
if (k < 0) k += Mod - 1;
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void init ()
{
vis[1] = true;
mu[1] = 1, phi[1] = 1;
for (int i = 2; i < N; ++i)
{
if (!vis[i])
{
p[++cnt] = i;
mu[i] = -1, phi[i] = i - 1;
}
for (int j = 1; j <= cnt && i * p[j] < N; ++j)
{
vis[i * p[j]] = true;
if (i % p[j] == 0)
{ phi[i * p[j]] = phi[i] * p[j]; break; }
mu[i * p[j]] = -mu[i], phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
for (int i = 1; i < N; ++i)
s[i] = (s[i - 1] + i) % _mod;
for (int i = 2; i < N; ++i)
phi[i] = (phi[i - 1] + phi[i]) % _mod;
}
namespace Type0
{
int f[N], g[N];
void init ()
{
f[0] = 1;
for (int i = 1; i < N; ++i)
f[i] = (LL)f[i - 1] * i % mod;
for (int i = 0; i < N; ++i) g[i] = 1;
for (int i = 1; i < N; ++i) if (mu[i])
for (int j = 1; i * j < N; ++j)
g[i * j] = (LL)g[i * j] * binpow(j, mu[i]) % mod;
for (int i = 1; i < N; ++i)
g[i] = (LL)g[i] * g[i - 1] % mod;
}
int X (int n, int a, int b) { return binpow(f[n], (LL)a * b % _mod); }
int Y (int n, int m, int k)
{
int res = 1;
if (n > m) swap(n, m);
for (int l = 1, r; l <= n; l = r + 1)
{
int a = n / l, b = m / l;
r = min(n / a, m / b);
res = (LL)res * binpow((LL)g[r] * binpow(g[l - 1]) % mod, (LL)a * b % _mod) % mod;
}
return binpow(res, k);
}
int ans(int A, int B, int C)
{ return (LL)X(A, B, C) * X(B, A, C) % mod * binpow((LL)Y(A, B, C) * Y(A, C, B) % mod) % mod; }
}
namespace Type1
{
int f[N], g[N];
void init ()
{
f[0] = 1;
for (int i = 1; i < N; ++i)
f[i] = (LL)f[i - 1] * binpow(i, i) % mod;
for (int i = 0; i < N; ++i) g[i] = 1;
for (int i = 1; i < N; ++i) if (mu[i])
for (int j = 1; i * j < N; ++j)
g[i * j] = (LL)g[i * j] * binpow(j, (LL)(i * j) * (i * j) * mu[i] % _mod) % mod;
for (int i = 1; i < N; ++i)
g[i] = (LL)g[i] * g[i - 1] % mod;
}
int X (int n, int a, int b) { return binpow(f[n], (LL)s[a] * s[b] % _mod); }
int Y (int n, int m, int k)
{
int res = 1;
if (n > m) swap(n, m);
for (int l = 1, r; l <= n; l = r + 1)
{
int a = n / l, b = m / l;
r = min(n / a, m / b);
res = (LL)res * binpow((LL)g[r] * binpow(g[l - 1]) % mod, (LL)s[a] * s[b] % _mod) % mod;
}
return binpow(res, s[k]);
}
int ans(int A, int B, int C)
{ return (LL)X(A, B, C) * X(B, A, C) % mod * binpow((LL)Y(A, B, C) * Y(A, C, B) % mod) % mod; }
}
namespace Type2
{
int ans (int A, int B, int C)
{
int n = min({A, B, C});
int res = 1;
for (int l = 1, r; l <= n; l = r + 1)
{
int a = A / l, b = B / l, c = C / l;
r = min({A / a, B / b, C / c});
res = (LL)res * binpow(Type0::ans(a, b, c), phi[r] - phi[l - 1]) % mod;
}
return res;
}
}
int main ()
{
int T; read(T, Mod);
mod = FastMod(Mod), _mod = FastMod(Mod - 1);
init();
Type0::init(), Type1::init();
for (int A, B, C; T; --T)
{
read(A, B, C);
write((Type0::ans(A, B, C) + Mod) % Mod), putchar(' ');
write((Type1::ans(A, B, C) + Mod) % Mod), putchar(' ');
write((Type2::ans(A, B, C) + Mod) % Mod), puts("");
}
return 0;
}