1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
| #include <cstdio> #include <algorithm> using namespace std; template <class Type> void read (Type &x) { char c; bool flag = false; while ((c = getchar()) < '0' || c > '9') c == '-' && (flag = true); x = c - '0'; while ((c = getchar()) >= '0' && c <= '9') x = (x << 1) + (x << 3) + c - '0'; flag && (x = ~x + 1); } template <class Type, class ...rest> void read (Type &x, rest &...y) { read(x), read(y...); } template <class Type> void write (Type x) { x < 0 && (putchar('-'), x = ~x + 1); x > 9 && (write(x / 10), 0); putchar('0' + x % 10); } typedef long long LL; const int N = 1e5 + 10; bool vis[N]; struct FastMod { typedef unsigned long long ULL; typedef unsigned __int128 UL; bool flag; int d, l; ULL m; FastMod () {} FastMod (int _d) : d(_d) { l = 64 - __builtin_clzll(d - 1); const UL i = 1; UL M = ((i << (64 + l)) + (i << l)) / d; if (M < (i << 64)) flag = 1, m = M; else flag = 0, m = M - (i << 64); } friend ULL operator/(ULL n, const FastMod &m) { if (m.flag) return (UL)n * m.m >> 64 >> m.l; ULL t = (UL)n * m.m >> 64; return (((n - t) >> 1) + t) >> (m.l - 1); } template <class Type> friend Type operator % (Type n, const FastMod &m) { bool flag = false; if (n < 0) flag = true, n = ~n + 1; n -= n / m * m.d; if (flag) n = ~n + 1; return n; } } mod, _mod; int Mod; int cnt, p[N], mu[N], phi[N], s[N]; int binpow (int b, int k = Mod - 2) { if (k < 0) k += Mod - 1; int res = 1; for (; k; k >>= 1, b = (LL)b * b % mod) if (k & 1) res = (LL)res * b % mod; return res; } void init () { vis[1] = true; mu[1] = 1, phi[1] = 1; for (int i = 2; i < N; ++i) { if (!vis[i]) { p[++cnt] = i; mu[i] = -1, phi[i] = i - 1; } for (int j = 1; j <= cnt && i * p[j] < N; ++j) { vis[i * p[j]] = true; if (i % p[j] == 0) { phi[i * p[j]] = phi[i] * p[j]; break; } mu[i * p[j]] = -mu[i], phi[i * p[j]] = phi[i] * phi[p[j]]; } } for (int i = 1; i < N; ++i) s[i] = (s[i - 1] + i) % _mod; for (int i = 2; i < N; ++i) phi[i] = (phi[i - 1] + phi[i]) % _mod; } namespace Type0 { int f[N], g[N]; void init () { f[0] = 1; for (int i = 1; i < N; ++i) f[i] = (LL)f[i - 1] * i % mod; for (int i = 0; i < N; ++i) g[i] = 1; for (int i = 1; i < N; ++i) if (mu[i]) for (int j = 1; i * j < N; ++j) g[i * j] = (LL)g[i * j] * binpow(j, mu[i]) % mod; for (int i = 1; i < N; ++i) g[i] = (LL)g[i] * g[i - 1] % mod; } int X (int n, int a, int b) { return binpow(f[n], (LL)a * b % _mod); } int Y (int n, int m, int k) { int res = 1; if (n > m) swap(n, m); for (int l = 1, r; l <= n; l = r + 1) { int a = n / l, b = m / l; r = min(n / a, m / b); res = (LL)res * binpow((LL)g[r] * binpow(g[l - 1]) % mod, (LL)a * b % _mod) % mod; } return binpow(res, k); } int ans(int A, int B, int C) { return (LL)X(A, B, C) * X(B, A, C) % mod * binpow((LL)Y(A, B, C) * Y(A, C, B) % mod) % mod; } } namespace Type1 { int f[N], g[N]; void init () { f[0] = 1; for (int i = 1; i < N; ++i) f[i] = (LL)f[i - 1] * binpow(i, i) % mod; for (int i = 0; i < N; ++i) g[i] = 1; for (int i = 1; i < N; ++i) if (mu[i]) for (int j = 1; i * j < N; ++j) g[i * j] = (LL)g[i * j] * binpow(j, (LL)(i * j) * (i * j) * mu[i] % _mod) % mod; for (int i = 1; i < N; ++i) g[i] = (LL)g[i] * g[i - 1] % mod; } int X (int n, int a, int b) { return binpow(f[n], (LL)s[a] * s[b] % _mod); } int Y (int n, int m, int k) { int res = 1; if (n > m) swap(n, m); for (int l = 1, r; l <= n; l = r + 1) { int a = n / l, b = m / l; r = min(n / a, m / b); res = (LL)res * binpow((LL)g[r] * binpow(g[l - 1]) % mod, (LL)s[a] * s[b] % _mod) % mod; } return binpow(res, s[k]); } int ans(int A, int B, int C) { return (LL)X(A, B, C) * X(B, A, C) % mod * binpow((LL)Y(A, B, C) * Y(A, C, B) % mod) % mod; } } namespace Type2 { int ans (int A, int B, int C) { int n = min({A, B, C}); int res = 1; for (int l = 1, r; l <= n; l = r + 1) { int a = A / l, b = B / l, c = C / l; r = min({A / a, B / b, C / c}); res = (LL)res * binpow(Type0::ans(a, b, c), phi[r] - phi[l - 1]) % mod; } return res; } } int main () { int T; read(T, Mod); mod = FastMod(Mod), _mod = FastMod(Mod - 1); init(); Type0::init(), Type1::init(); for (int A, B, C; T; --T) { read(A, B, C); write((Type0::ans(A, B, C) + Mod) % Mod), putchar(' '); write((Type1::ans(A, B, C) + Mod) % Mod), putchar(' '); write((Type2::ans(A, B, C) + Mod) % Mod), puts(""); } return 0; }
|
Gitalk 加载中 ...