Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P5024 [NOIP2018 提高组] 保卫王国

P5024 [NOIP2018 提高组] 保卫王国

动态DP做法,和模板题类似。同样可以写出DP方程:
$$
\begin {cases}
f _ {i, 0} = \sum f _ {j, 1} \\
f _ {i, 1} = \sum \min (f _ {j, 0}, f _ {j, 1})
\end {cases}
$$
写出转移矩阵:
$$
\begin{bmatrix}
\infty & g _ {i, 0} \\
g _ {i, 1} & g _ {i, 1}
\end{bmatrix}
\times
\begin{bmatrix}
/ & g _ {j, 0} \\
/ & g _ {j, 1}
\end{bmatrix}
=
\begin{bmatrix}
/ & f _ {i, 0} \\
/ & f _ {i, 1}
\end{bmatrix}
$$
不能选择一个点即将其代价令为正无穷;一定要选择某个点即直接加入其代价,令其代价为 $0$ 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include <cstdio>
#include <vector>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...rest>
void read(Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write(Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
template <class Type>
void chkmin (Type &x, Type k) { if (k < x) x = k; }
template <class Type>
void chkmax (Type &x, Type k) { if (k > x) x = k; }
typedef long long LL;
const int N = 1e5 + 10;
const LL inf = 1e10;
vector <int> g[N];
LL w[N], f[N][2];
int n, m, p[N], sz[N];
int stmp, dfn[N], rnk[N], son[N], top[N], ed[N];
struct Matrix
{
LL w[2][2];
Matrix () { w[0][0] = w[0][1] = w[1][0] = w[1][1] = inf; }
friend Matrix operator * (Matrix a, Matrix b)
{
Matrix res;
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 2; ++j)
for (int k = 0; k < 2; ++k)
chkmin(res.w[i][j], a.w[i][k] + b.w[k][j]);
return res;
}
} v[N];
struct Node { int l, r; Matrix w; } tr[N << 2];
void pushup (int x) { tr[x].w = tr[x << 1].w * tr[x << 1 | 1].w; }
void build (int l = 1, int r = n, int x = 1)
{
tr[x].l = l, tr[x].r = r;
if (l == r) return void(tr[x].w = v[rnk[l]]);
int mid = l + r >> 1;
build(l, mid, x << 1), build(mid + 1, r, x << 1 | 1);
pushup(x);
}
void modify (int t, int x = 1)
{
if (tr[x].l == tr[x].r) return void(tr[x].w = v[rnk[t]]);
int mid = tr[x].l + tr[x].r >> 1;
modify(t, t <= mid ? x << 1 : x << 1 | 1);
pushup(x);
}
Matrix query (int l, int r, int x = 1)
{
if (tr[x].l >= l && tr[x].r <= r) return tr[x].w;
int mid = tr[x].l + tr[x].r >> 1;
if (r <= mid) return query(l, r, x << 1);
if (l > mid) return query(l, r, x << 1 | 1);
return query(l, r, x << 1) * query(l, r, x << 1 | 1);
}
void dfs1 (int x)
{
sz[x] = 1;
for (int i : g[x]) if (i ^ p[x])
{
p[i] = x;
dfs1(i);
sz[x] += sz[i];
if (sz[i] > sz[son[x]]) son[x] = i;
}
}
void dfs2 (int x, int t)
{
rnk[dfn[x] = ++stmp] = x;
top[x] = t;
chkmax(ed[t], stmp);
f[x][0] = 0, f[x][1] = w[x];
v[x].w[0][1] = 0, v[x].w[1][0] = v[x].w[1][1] = w[x];
if (!son[x]) return;
dfs2(son[x], t);
f[x][0] += f[son[x]][1], f[x][1] += min(f[son[x]][0], f[son[x]][1]);
for (int i : g[x]) if (i ^ p[x] && i ^ son[x])
{
dfs2(i, i);
f[x][0] += f[i][1], f[x][1] += min(f[i][0], f[i][1]);
v[x].w[0][1] += f[i][1];
v[x].w[1][0] += min(f[i][0], f[i][1]);
v[x].w[1][1] = v[x].w[1][0];
}
}
void ModifyPath (int x, LL k)
{
v[x].w[1][0] += k - w[x], v[x].w[1][1] = v[x].w[1][0], w[x] = k;
while (x)
{
Matrix s = query(dfn[top[x]], ed[top[x]]);
modify(dfn[x]);
Matrix t = query(dfn[top[x]], ed[top[x]]);
x = p[top[x]];
v[x].w[0][1] += t.w[1][1] - s.w[1][1];
v[x].w[1][0] += min(t.w[0][1], t.w[1][1]) - min(s.w[0][1], s.w[1][1]);
v[x].w[1][1] = v[x].w[1][0];
}
}
int main ()
{
read(n, m); scanf("%*s");
for (int i = 1; i <= n; ++i) read(w[i]);
for (int i = 1, a, b; i < n; ++i)
{
read(a, b);
g[a].push_back(b), g[b].push_back(a);
}
dfs1(1), dfs2(1, 1), build();
for (int a, x, b, y; m; --m)
{
read(a, x, b, y);
LL s = w[a], t = w[b], res = 0;
x ? (res += s, ModifyPath(a, 0)) : ModifyPath(a, inf);
y ? (res += t, ModifyPath(b, 0)) : ModifyPath(b, inf);
Matrix k = query(dfn[1], ed[1]);
res += min(k.w[0][1], k.w[1][1]);
ModifyPath(a, s), ModifyPath(b, t);
write(res >= inf ? -1 : res), puts("");
}
return 0;
}