Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P4491 [HAOI2018]染色

P4491 [HAOI2018]染色

考虑每个 $K$ 的贡献,在 $m$ 个颜色里选择 $K$ 个,有 $\binom m K$ 种方案。选择的这些颜色必须出现 $S$ 次,那么从 $n$ 个位置中选择 $n - SK$ 个位置中,每个位置都有 $m - K$ 种选择,即 $\binom n {n - SK} (m - K) ^ {n - SK}$ 。对于这 $SK$ 个位置中,选择的颜色也是固定的了,只需要考虑排列顺序,而每种颜色中顺序是无所谓的,即 $\frac {(SK)!} {(S!) ^ K}$ 。注意到这样计算后其他位置的颜色是不可控制的,答案是算多了的。记这个式子 $F(K) = \binom m K \binom n {n - SK} (m - K) ^ {n - SK} \frac {(SK)!} {(S!) ^ K} = \frac {m!n!(m - K) ^ {n - SK}}{K!(m - K)!(n - SK)!(S!) ^ K}$ 。

考虑其和真实答案的关系,枚举多少个多的被算上了,即 $F(x) = \sum _ {i= x} \binom m i G(i)$ 。二项式反演,那么有 $G(x) = \sum _ {i = x} (-1) ^ {i - x} \binom i x \frac {m!n!(m - i) ^ {n - Si}}{i!(m - i)!(n - Si)!(S!) ^ K} $ 。

将关于 $i$ 和 $i - x$ 的项提出,就可以卷积计算了。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
flag |= c == '-';
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...Rest>
void read (Type &x, Rest &...y) { read(x); read(y...); }
template <class Type>
void write (Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 1e7 + 10, mod = 1004535809;
int rev[N];
int n, m, S;
int inv[N], fact[N], ifact[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void init ()
{
inv[1] = 1;
for (int i = 2; i < N; ++i)
inv[i] = -(LL)(mod / i) * inv[mod % i] % mod;
fact[0] = ifact[0] = 1;
for (int i = 1; i < N; ++i)
{
fact[i] = (LL)fact[i - 1] * i % mod;
ifact[i] = (LL)ifact[i - 1] * inv[i] % mod;
}
}
int C (int a, int b) { return a < b ? 0 : (LL)fact[a] * ifact[b] % mod * ifact[a - b] % mod; }
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 0; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[i], x[rev[i]]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i + j], q = (LL)k * x[i + j + mid] % mod;
x[i + j] = (p + q) % mod, x[i + j + mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
int main ()
{
init();
read(n, m, S);
int len = min(m, n / S);
static int A[N], B[N];
int bit = 0;
while (len + len + 1 > 1 << bit) ++bit;
int tot = 1 << bit;
for (int i = 0; i <= len; ++i)
{
A[i] = (LL)fact[i] * C(m, i) % mod * binpow(ifact[S], i) % mod * ifact[n - S * i] % mod * binpow(m - i, n - S * i) % mod;
B[len - i] = (i & 1 ? -1 : 1) * ifact[i];
}
for (int i = len + 1; i < tot; ++i)
A[i] = B[i] = 0;
ntt(A, bit, 1), ntt(B, bit, 1);
for (int i = 0; i < tot; ++i)
A[i] = (LL)A[i] * B[i] % mod;
ntt(A, bit, -1);
int res = 0;
for (int i = 0, a; i <= len; ++i)
{
read(a);
(res += (LL)a * ifact[i] % mod * A[len + i] % mod) %= mod;
}
write(((LL)res * fact[n] % mod + mod) % mod);
return 0;
}