Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P4389 付公主的背包

P4389 付公主的背包

对于每件物品有 $F(x)\sum _ {i = 0} x ^ {iv _ i}$ 。答案即为 $\prod F(x)$ ,但是需要将 $n$ 个式子做 ntt ,复杂度 $O(nm\log m)$ 。注意到对于 $v _ i$ ,生成函数只有 $\frac m {v _ i}$ 项,那么考虑统计每个数出现的次数 $b _ i$,那么有答案为 $\prod _ k F(x) ^ {b _ k}$ ,乘法是不好算的,考虑取一个 $\ln$ 。其中 $\ln F(x) = \ln \frac 1 {1 - x ^ {v _ i}} = -\ln (1 - x ^ {v _ i}) = \sum _ {i = 1} \frac {x ^ {i v _ i}} i$ 。那么答案为 $\sum _ k \sum _ {j = 1} ^ {\lfloor \frac m k \rfloor} \frac {b _ k} j x ^ {kj}$ 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
flag |= c == '-';
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...Rest>
void read (Type &x, Rest &...y) { read(x); read(y...); }
template <class Type>
void write (Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 1e6 + 10, mod = 998244353, inv2 = mod + 1 >> 1;
int rev[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 1; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
void PolyMul (int n, int *f, int m, int *g, int nm, int *res)
{
int bit = 0;
while (1 << bit < n + m - 1) ++bit;
int tot = 1 << bit;
for (int i = n; i < tot; ++i) f[i] = 0;
for (int i = m; i < tot; ++i) g[i] = 0;
ntt(f, bit, 1), ntt(g, bit, 1);
for (int i = 0; i < tot; ++i)
res[i] = (LL)f[i] * g[i] % mod;
ntt(res, bit, -1);
for (int i = nm; i < tot; ++i) res[i] = 0;
}
void PolyInv(int n, int *x, int *g)
{
if (n == 1) return void(g[0] = binpow(x[0]));
int m = n + 1 >> 1;
int bit = 0;
while (1 << bit < n + m + m - 2) ++bit;
int tot = 1 << bit;
PolyInv(m, x, g);
for (int i = m; i < tot; ++i) g[i] = 0;
static int A[N];
for (int i = 0; i < n; ++i) A[i] = x[i];
for (int i = n; i < tot; ++i) A[i] = 0;
ntt(g, bit, 1), ntt(A, bit, 1);
for (int i = 0; i < tot; ++i)
g[i] = (2 - (LL)g[i] * A[i]) % mod * g[i] % mod;
ntt(g, bit, -1);
for (int i = n; i < tot; ++i) g[i] = 0;
}
void PolyDerivate(int n, int *x, int *g)
{
for (int i = 1; i < n; ++i)
g[i - 1] = (LL)x[i] * i % mod;
g[n - 1] = 0;
}
void PolyIntegrate(int n, int *x, int *g)
{
for (int i = 1; i < n; ++i)
g[i] = (LL)x[i - 1] * binpow(i) % mod;
g[0] = 0;
}
void PolyLn(int n, int *x, int *g)
{
static int A[N], B[N];
PolyDerivate(n, x, A);
PolyInv(n, x, B);
PolyMul(n, A, n, B, n, A);
PolyIntegrate(n, A, g);
}
void PolyExp(int n, int *x, int *g)
{
if (n == 1) return void(g[0] = 1);
int m = n + 1 >> 1;
PolyExp(m, x, g);
for (int i = m; i < n; ++i) g[i] = 0;
static int A[N];
PolyLn(n, g, A);
for (int i = 0; i < n; ++i)
A[i] = (x[i] - A[i]) % mod;
++A[0];
PolyMul(n, A, m, g, n, g);
}
int main ()
{
static int n, m, cnt[N], A[N], B[N];
read(n, m);
for (int a; n; --n)
read(a), ++cnt[a];
for (int i = 1; i <= m; ++i)
for (int j = 1; i * j <= m; ++j)
(A[i * j] += (LL)cnt[i] * binpow(j) % mod) %= mod;
PolyExp(m + 1, A, B);
for (int i = 1; i <= m; ++i)
write((B[i] + mod) % mod), puts("");
return 0;
}