Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P4240 毒瘤之神的考验

P4240 毒瘤之神的考验

对于 $\varphi(ij)$ 有:

$$
\varphi(ij) = \frac {\varphi(i) \varphi(j) (i, j)} {\varphi((i, j))}
$$

$$
\begin {aligned}
\sum _ {i = 1} ^ n \sum _ {j = 1} ^ m \varphi(ij) & = \sum _ {i = 1} ^ n \sum _ {j = 1} ^ m \frac {\varphi(i) \varphi(j) (i, j)} {\varphi((i, j))} \\
& = \sum _ {d = 1} ^ n \frac d {\varphi(d)} \sum _ {i = 1} ^ n \sum _ {j = 1} ^ m [(i, j) = d] \varphi(i) \varphi(j) \\
& = \sum _ {d = 1} ^ n \frac d {\varphi(d)} \sum _ {i = 1} ^ {\lfloor \frac n d \rfloor } \sum _ {j = 1} ^ {\lfloor \frac m d \rfloor } [(i, j) = 1] \varphi(id) \varphi(jd) \\
& = \sum _ {d = 1} ^ n \frac d {\varphi(d)} \sum _ {i = 1} ^ {\lfloor \frac n d \rfloor } \sum _ {j = 1} ^ {\lfloor \frac m d \rfloor } \sum _ {k | (i, j)} \mu(k) \varphi(id) \varphi(jd) \\
& = \sum _ {d = 1} ^ n \sum _ {k = 1} ^ n \mu(k) \frac d {\varphi(d)} \sum _ {i = 1} ^ {\lfloor \frac n {kd} \rfloor } \sum _ {j = 1} ^ {\lfloor \frac m {kd} \rfloor } \varphi(idk) \varphi(jdk) \\
& = \sum _ {T = 1} ^ n (\mu * \frac {id} {\varphi})(T) \sum _ {i = 1} ^ {\lfloor \frac n T \rfloor } \varphi(iT) \sum _ {j = 1} ^ {\lfloor \frac m T \rfloor } \varphi(jT) \\
\end {aligned}
$$

左侧部分的积性函数可以在接受范围内求得,记为 $f$ 。右侧关于 $T$ 和 $\lfloor \frac n T \rfloor $ 记为 $g(a, b)$ ,总状态数有 $n \ln n$ 个可以直接求得。这样可以得到一个 $O(n \ln n + Tn)$ 的做法。

将原式写为:

$$
\sum _ {d = 1} ^ n f(d) g(d, \lfloor \frac n d \rfloor) g(d, \lfloor \frac m d \rfloor)
$$

考虑数论分块,对于当前一段 $[l, r]$ ,其 $\lfloor \frac n d \rfloor$ 和 $\lfloor \frac m d \rfloor$ 都相同。需要得到 $\sum _ {i = l} ^ r f(i) g(i, \lfloor \frac n d \rfloor) g(i, \lfloor \frac m d \rfloor)$ 。考虑对于每一组 $(\lfloor \frac n d \rfloor, \lfloor \frac m d \rfloor)$ 预处理 $f(i) g(i, \lfloor \frac n d \rfloor) g(i, \lfloor \frac m d \rfloor)$ 的前缀和。如果全部预处理,时空复杂度都是不可接受的,考虑预处理 $\lfloor \frac n d \rfloor, \lfloor \frac m d \rfloor < B$ 的范围内,那么时空复杂度为 $O(B ^ 2 n)$ ,查询复杂度 $O(\sqrt n)$ 。这样的话剩下的部分依然暴力查询,即 $d \le \frac m B$ 的部分,复杂度 $O(\frac n B)$。

这样复杂度有 $O(n \ln n + n B^ 2 + T(\sqrt n + \frac n B))$ 。当 $n = \sqrt [3] T$ 取到理论最优,为 $O(n \ln n + n T ^ {\frac 2 3} + n ^ {\frac 1 2}T)$ 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <cstdio>
#include <vector>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0';
flag && (x = ~x + 1);
}
template <class Type, class ...rest>
void read (Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write (Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 1e5 + 10, B = 35, mod = 998244353;
bool vis[N];
vector <int> g[N], h[B][B];
int cnt, p[N], mu[N], phi[N], inv[N], f[N];
void init ()
{
inv[1] = 1;
for (int i = 2; i < N; ++i)
inv[i] = -(LL)(mod / i) * inv[mod % i] % mod;
vis[1] = true;
mu[1] = 1, phi[1] = 1;
for (int i = 2; i < N; ++i)
{
if (!vis[i])
{
p[++cnt] = i;
mu[i] = -1, phi[i] = i - 1;
}
for (int j = 1; j <= cnt && i * p[j] < N; ++j)
{
vis[i * p[j]] = true;
if (i % p[j] == 0)
{
mu[i * p[j]] = 0, phi[i * p[j]] = phi[i] * p[j];
break;
}
mu[i * p[j]] = -mu[i], phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
for (int i = 1; i < N; ++i) if (mu[i])
for (int j = 1; i * j < N; ++j)
f[i * j] = (f[i * j] + (LL)mu[i] * j * inv[phi[j]]) % mod;
for (int i = 1; i < N; ++i)
{
g[i].resize(N / i + 1);
g[i][0] = 0;
for (int j = 1; i * j < N; ++j)
g[i][j] = (g[i][j - 1] + phi[i * j]) % mod;
}
for (int i = 1; i < B; ++i)
for(int j = i; j < B; ++j)
{
h[i][j].resize(N / j + 1);
for (int k = 1; j * k < N; ++k)
h[i][j][k] = (h[i][j][k - 1] + (LL)g[k][i] * g[k][j] % mod * f[k]) % mod;
}
}
int main ()
{
init();
int T; read(T);
for (int n, m; T; --T)
{
read(n, m);
if (n > m) swap(n, m);
int res = 0;
for (int i = 1; i <= m / B; ++i)
res = (res + (LL)g[i][n / i] * g[i][m / i] % mod * f[i]) % mod;
for (int l = m / B + 1, r; l <= n; l = r + 1)
{
int a = n / l, b = m / l;
r = min(n / a, m / b);
res = (res + (LL)h[a][b][r] - h[a][b][l - 1]) % mod;
}
write((res + mod) % mod), puts("");
}
return 0;
}