Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P4091 [HEOI2016/TJOI2016]求和

P4091 [HEOI2016/TJOI2016]求和

$$
\begin {aligned}
f(n) & = \sum_{i=0}^n\sum_{j=0}^i {i \brace j}\times 2^j \times j! \\
& = \sum_{i=0}^n\sum_{j=0}^n {i \brace j}\times 2^j \times j! \\
& = \sum_{j=0}^n 2^j \times j! \sum_{i=0}^n {i \brace j} \\
\end {aligned}
$$

考虑快速求出每个 $j$ 的 $\sum_{i=0}^n {i \brace j}$ 即可。考虑带入第二类斯特林数的通项公式:

$$
\begin {aligned}
g(j) & = \sum _ {i = 0} ^ n {i \brace j} \\
& = \sum _ {i = 0} ^ n \sum _ {k = 0} ^ j \frac {(-1) ^ {j - k}k ^ i}{k!(j - k)!}\\
& = \sum _ {k = 0} ^ j \frac {(-1) ^ {j - k}\sum _ {i = 0} ^ n k ^ i}{k!(j - k)!}\\
& = \sum _ {k = 0} ^ j \frac {(-1) ^ {j - k}
\frac {k ^ {n + 1} - 1}{k - 1}}{k!(j - k)!}\\
\end {aligned}
$$

将关于 $k$ 的项和关于 $j - k$ 的项提出来卷积即可。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
flag |= c == '-';
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...Rest>
void read (Type &x, Rest &...y) { read(x); read(y...); }
template <class Type>
void write (Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar('0' + x % 10);
}
typedef long long LL;
const int N = 5e5 + 10, mod = 998244353, inv2 = mod + 1 >> 1;
int rev[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 1; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
void PolyMul (int n, int *f, int m, int *g, int nm, int *res)
{
int bit = 0;
while (1 << bit < n + m - 1) ++bit;
int tot = 1 << bit;
for (int i = n; i < tot; ++i) f[i] = 0;
for (int i = m; i < tot; ++i) g[i] = 0;
ntt(f, bit, 1), ntt(g, bit, 1);
for (int i = 0; i < tot; ++i)
res[i] = (LL)f[i] * g[i] % mod;
ntt(res, bit, -1);
for (int i = nm; i < tot; ++i) res[i] = 0;
}
int main ()
{
static int n, A[N], B[N];
read(n);
for (int i = 0, t = 1; i <= n; t = (LL)t * ++i % mod)
A[i] = (i & 1 ? -1 : 1) * binpow(t);
B[0] = 1, B[1] = n + 1;
for (int i = 2, t = 2; i <= n; t = (LL)t * ++i % mod)
B[i] = (binpow(i, n + 1) - 1ll) * binpow(t) % mod * binpow(i - 1) % mod;
PolyMul(n + 1, A, n + 1, B, n + 1, A);
int res = 0;
for (int i = 0, t = 1; i <= n; t = (LL)t * ++i * 2 % mod)
(res += (LL)A[i] * t % mod) %= mod;
write((res + mod) % mod);
return 0;
}