Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P4035 [JSOI2008]球形空间产生器

P4035 [JSOI2008]球形空间产生器

需要找到一个 $x _ i$ ,使得
$$
\forall i, \sum _ {j = 1} ^ n (p _ {i, j} - x _ j) ^ 2 = r ^ 2
$$
注意到有二次项,不能直接高斯消元。但是可以发现所有的 $x _ j ^ 2$ 项的系数都是相同的,因此可以相邻两个方程相减,同时还可以将 $r ^ 2$ 消掉。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 20;
const double eps = 1e-8;
int n;
double p[N][N], A[N][N];
int Gauss()
{
int c = 0, r = 0;
for (; c < n; c++)
{
int t = r;
for (int i = r; i < n; i++)
if (fabs(A[i][c]) > fabs(A[t][c]))
t = i;
if (fabs(A[t][c]) < eps)
continue;
for (int i = c; i <= n; i++)
swap(A[t][i], A[r][i]);
for (int i = n; i >= c; i--)
A[r][i] /= A[r][c];
for (int i = r + 1; i < n; i++)
if (fabs(A[i][c]) > eps)
for (int j = n; j >= c; j--)
A[i][j] -= A[r][j] * A[i][c];
r++;
}
if (r < n)
{
for (int i = r; i < n; i++)
if (fabs(A[i][n]) > eps)
return 1;
return 2;
}
for (int i = n - 1; i >= 0; i--)
for (int j = i + 1; j < n; ++j)
A[i][n] -= A[i][j] * A[j][n];
return 0;
}
int main()
{
scanf("%d", &n);
for (int i = 0; i <= n; i++)
for (int j = 0; j < n; j++)
scanf("%lf", &p[i][j]);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
{
A[i][j] = 2 * (p[i][j] - p[i + 1][j]);
A[i][n] += p[i][j] * p[i][j] - p[i + 1][j] * p[i + 1][j];
}
Gauss();
for (int i = 0; i < n; i++)
printf("%.3lf ", A[i][n]);
return 0;
}