Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P3976 [TJOI2015]旅游

P3976 [TJOI2015]旅游

线段树维护从左到右的答案和从右到左的答案。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' && c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write (Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar('0' + x % 10);
}
const int N = 5e4 + 10;
struct Node
{
int l, r, tag, mn, mx, lv, rv;
friend Node operator ~ (Node _)
{
Node res = _;
swap(res.lv, res.rv);
return res;
}
} tr[N << 2];
vector <int> g[N];
int n, m, w[N], d[N], p[N], sz[N];
int stmp, dfn[N], rnk[N], son[N], top[N];
void pushup (Node &x, Node l, Node r)
{
x.mn = min(l.mn, r.mn);
x.mx = max(l.mx, r.mx);
x.lv = max(max(l.lv, r.lv), r.mx - l.mn);
x.rv = max(max(l.rv, r.rv), l.mx - r.mn);
}
void add (int x, int k)
{
tr[x].mn += k, tr[x].mx += k;
tr[x].tag += k;
}
void pushdown (int x)
{
add(x << 1, tr[x].tag), add(x << 1 | 1, tr[x].tag);
tr[x].tag = 0;
}
void build (int l = 1, int r = n, int x = 1)
{
tr[x].l = l, tr[x].r = r;
if (l == r)
return void(tr[x].mn = tr[x].mx = w[rnk[l]]);
int mid = l + r >> 1;
build(l, mid, x << 1), build(mid + 1, r, x << 1 | 1);
pushup(tr[x], tr[x << 1], tr[x << 1 | 1]);
}
void modify (int l, int r, int k, int x = 1)
{
if (l > tr[x].r || tr[x].l > r)
return;
if (tr[x].l >= l && tr[x].r <= r)
return add(x, k);
pushdown(x);
modify(l, r, k, x << 1), modify(l, r, k, x << 1 | 1);
pushup(tr[x], tr[x << 1], tr[x << 1 | 1]);
}
Node query (int l, int r, int x = 1)
{
if (tr[x].l >= l && tr[x].r <= r)
return tr[x];
pushdown(x);
int mid = tr[x].l + tr[x].r >> 1;
if (r <= mid)
return query(l, r, x << 1);
if (l > mid)
return query(l, r, x << 1 | 1);
Node res;
pushup(res, query(l, r, x << 1), query(l, r, x << 1 | 1));
return res;
}
void dfs1 (int x)
{
sz[x] = 1;
son[x] = -1;
for (int i : g[x])
if (!d[i])
{
p[i] = x;
d[i] = d[x] + 1;
dfs1(i);
sz[x] += sz[i];
(son[x] == -1 || sz[i] > sz[son[x]]) && (son[x] = i);
}
}
void dfs2 (int x, int t)
{
rnk[dfn[x] = ++stmp] = x;
top[x] = t;
~son[x] && (dfs2(son[x], t), 0);
for (int i : g[x])
i ^ p[x] && i ^ son[x] && (dfs2(i, i), 0);
}
void ModifyPath (int x, int y, int k)
{
while (top[x] ^ top[y])
{
d[top[x]] < d[top[y]] && (swap(x, y), 0);
modify(dfn[top[x]], dfn[x], k);
x = p[top[x]];
}
d[x] > d[y] && (swap(x, y), 0);
modify(dfn[x], dfn[y], k);
}
int QueryPath (int x, int y)
{
Node l, r;
bool _l = false, _r = false;
while (top[x] ^ top[y])
if (d[top[x]] > d[top[y]])
{
Node t = ~query(dfn[top[x]], dfn[x]);
_l ? pushup(l, l, t) : (l = t, void(_l = true));
x = p[top[x]];
}
else
{
Node t = query(dfn[top[y]], dfn[y]);
_r ? pushup(r, t, r) : (r = t, void(_r = true));
y = p[top[y]];
}
if (d[x] < d[y])
_l ? pushup(l, l, query(dfn[x], dfn[y])) : void(l = query(dfn[x], dfn[y]));
else
_l ? pushup(l, l, ~query(dfn[y], dfn[x])) : void(l = ~query(dfn[y], dfn[x]));
return _r ? (pushup(l, l, r), l.lv) : l.lv;
}
int main ()
{
read(n);
for (int i = 1; i <= n; i++)
read(w[i]);
for (int i = 1, u, v; i < n; i++)
{
read(u), read(v);
g[u].push_back(v);
g[v].push_back(u);
}
d[1] = 1, dfs1(1), dfs2(1, 1), build();
read(m);
for (int a, b, v; m; m--)
{
read(a), read(b), read(v);
write(QueryPath(a, b)), puts("");
ModifyPath(a, b, v);
}
return 0;
}