Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P3768 简单的数学题

P3768 简单的数学题

先推式子:
$$
\begin {aligned}
& \sum _ {i = 1} ^n \sum _ {j = 1} ^ n i j (i, j) \\
= & \sum _ {d = 1} ^ n d \sum _ {i = 1} ^ n \sum _ {j = 1} ^ n i j [(i, j) = d] \\
= & \sum _ {d = 1} ^ n d \sum _ {i = 1} ^ {\left \lfloor \frac n d \right \rfloor} \sum _ {j = 1} ^ {\left \lfloor \frac n d \right \rfloor} id jd [(i, j) = 1] \\
= & \sum _ {d = 1} ^ n d ^ 3 \sum _ {i = 1} ^ {\left \lfloor \frac n d \right \rfloor} \sum _ {j = 1} ^ {\left \lfloor \frac n d \right \rfloor} i j \sum _ {x | i \wedge x | j} \mu (x)\\
= & \sum _ {d = 1} ^ n d ^ 3 \sum _ {x = 1} ^ {\left \lfloor \frac n d \right \rfloor} \mu (x) \sum _ {i = 1} ^ {\left \lfloor \frac n {xd} \right \rfloor} \sum _ {j = 1} ^ {\left \lfloor \frac n {xd} \right \rfloor} xi xj \\
= & \sum _ {d = 1} ^ n d ^ 3 \sum _ {x = 1} ^ {\left \lfloor \frac n d \right \rfloor} \mu (x) x ^ 2 F ^ 2(\left \lfloor \frac n {xd} \right \rfloor) \\
\end {aligned}
$$
其中 $F(x) = \displaystyle \sum _ {i = 1} ^ n i$ ,令 $T = xd$ ,枚举 $T$
$$
\begin {aligned}
& \sum _ {T = 1} ^ n F ^ 2(\left \lfloor \frac n T \right \rfloor) \sum _ {d | T} \mu (\frac T d) d ^ 3(\frac T d) ^ 2 \\
= & \sum _ {T = 1} ^ n F ^ 2(\left \lfloor \frac n T \right \rfloor) T ^ 2 \sum _ {d | T} \mu (\frac T d) d \\
\end {aligned}
$$

其中

$$
\sum _ {d | T} \mu (\frac T d) d = \mu * id = \varphi
$$
所以
$$
\begin {aligned}
\sum _ {T = 1} ^ n F ^ 2(\left \lfloor \frac n T \right \rfloor) T ^ 2 \varphi (T)\\
\end {aligned}
$$
计算时可以用数论分块,现在考虑如何计算 $T ^2 \varphi(T)$ 的前缀和。


$$
f(x) = x ^ 2 \varphi (x) \\
s(x) = \sum _ {i = 1} ^ n f(i) = \sum _ {i = 1} ^ n i ^ 2 \varphi (i) = \sum _ {i = 1} ^ n id ^ 2 \varphi (i)
$$
卷上 $id ^ 2$ ,
$$
s(x) = \sum _ {i = 1} ^ n ((id ^ 2 \varphi) * id ^ 2)(i) - \sum _ {i = 2} ^ n id ^ 2 (i) s(\left \lfloor \frac n i \right \rfloor)
$$
其中
$$
\begin {aligned}
& (id ^ 2 \varphi) * id ^ 2 (x) \\
= & \sum _ {d | x} id ^ 2 \varphi (d) id ^ 2(\frac x d) \\
= & \sum _ {d | x} d ^ 2 \varphi (d) ({\frac x d}) ^ 2 \\
= & \sum _ {d | x} x ^ 2 \varphi (d) \\
= & x ^ 2 (\varphi * 1) \\
= & id ^ 3 (x)
\end {aligned}
$$
因此,
$$
s(x) = \sum _ {i = 1} ^ n i ^ 3 - \sum _ {i = 2} ^ n i ^ 2 s(\left \lfloor \frac n i \right \rfloor)
$$

其中,
$$
\sum _ {i = 1} ^ n i ^ 3 = (\sum _ {i = 1} ^ n i) ^ 2 = F ^ 2(n)
$$


$$
\sum _ {i = 1} ^ n i ^ 2 = \frac {n (n + 1) (2n + 1)} 6
$$

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <cstdio>
#include <cmath>
#include <unordered_map>
using namespace std;
typedef long long LL;
const int N = 5e6 + 10;
LL n;
int m, mod, inv2, inv6;
bool vis[N];
int cnt, p[N], phi[N], s[N];
unordered_map<LL, int> _s;
int binpow(int b, int k)
{
int res = 1;
while (k)
{
if (k & 1)
res = (LL)res * b % mod;
b = (LL)b * b % mod;
k >>= 1;
}
return res;
}
void init()
{
vis[1] = true;
phi[1] = 1;
for (int i = 2; i <= m; i++)
{
if (!vis[i])
{
p[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && i * p[j] <= m; j++)
{
vis[i * p[j]] = true;
if (i % p[j] == 0)
{
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
for (int i = 1; i <= m; i++)
s[i] = ((LL)i * i % mod * phi[i] % mod + s[i - 1]) % mod;
}
int F_2(LL x)
{
x %= mod;
x = (LL)x * (x + 1) % mod * inv2 % mod;
return (LL)x * x % mod;
}
int _2sum(LL x)
{
x %= mod;
return (LL)x * (x + 1) % mod * (x * 2 % mod + 1) % mod * inv6 % mod;
}
int S(LL x)
{
if (x <= m)
return s[x];
if (_s.count(x))
return _s[x];
int res = F_2(x), pre = s[1], cur;
for (LL l = 2, r; l <= x; l = r + 1)
{
r = x / (x / l);
cur = _2sum(r);
res = (res - ((LL)cur - pre) % mod * S(x / l) % mod) % mod;
pre = cur;
}
return _s[x] = res;
}
int main()
{
scanf("%d%lld", &mod, &n);
inv2 = binpow(2, mod - 2), inv6 = binpow(6, mod - 2);
m = pow(n, 0.666667);
init();
int res = 0, pre = 0, cur;
for (LL l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
cur = S(r);
res = (res + ((LL)cur - pre) % mod * F_2(n / l) % mod) % mod;
pre = cur;
}
printf("%d", ((LL)res + mod) % mod);
return 0;
}