Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P3704 [SDOI2017]数字表格

P3704 [SDOI2017]数字表格

$$
\begin {aligned}
ANS & = \prod _ {i = 1} ^ n \prod _ {j = 1} ^ m f _ {(i, j)} \\
& = \prod _ {d = 1} ^ n f _ d ^ {\sum _ {i = 1} ^ n \sum _ {j = 1} ^ m [(i, j) = d]} \\
\end {aligned}
$$
对于指数部分:
$$
\begin {aligned}
\sum _ {i = 1} ^ n \sum _ {j = 1} ^ m [(i, j) = d] & = \sum _ {i = 1} ^ {\lfloor \frac n d \rfloor} \sum _ {j = 1} ^ {\lfloor \frac m d \rfloor}[(i, j) = 1] \\
& = \sum _ {i = 1} ^ {\lfloor \frac n d \rfloor} \sum _ {j = 1} ^ {\lfloor \frac m d \rfloor}\sum _ {e | (i, j)} \mu(e) \\
& = \sum _ {e = 1} ^ n \mu(e) \sum _ {i = 1} ^ {\lfloor \frac n {de} \rfloor} \sum _ {j = 1} ^ {\lfloor \frac m {de} \rfloor}\\
\end {aligned}
$$
令 $T = de$ ,那么有:
$$
\begin {aligned}
ANS & = \prod _ {d = 1} ^ n f _ d ^ {\sum _ {e = 1} ^ n \mu(e) \sum _ {i = 1} ^ {\lfloor \frac n {de} \rfloor} \sum _ {j = 1} ^ {\lfloor \frac m {de} \rfloor}} \\
& = \prod _ {T = 1} ^ n \prod _ {d | T} f _ d ^ {\mu(\frac T d) \sum _ {i = 1} ^ {\lfloor \frac n T \rfloor} \sum _ {i = 1} ^ {\lfloor \frac m T \rfloor}} \\
& = \prod _ {T = 1} ^ n (\prod _ {d | T} f _ d ^ {\mu(\frac T d)})^ {\lfloor \frac n T \rfloor\lfloor \frac m T \rfloor}
\end {aligned}
$$
预处理 $\prod _ {d | T} f _ d ^ {\mu(\frac T d)}$ 的前缀和,数论分块。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...rest>
void read(Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write(Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
typedef long long LL;
const int N = 1e6 + 10, mod = 1e9 + 7;
bool vis[N];
int n, m;
int cnt, p[N], mu[N], f[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void init ()
{
vis[1] = true;
mu[1] = 1;
for (int i = 2; i < N; ++i)
{
if (!vis[i]) mu[p[++cnt] = i] = -1;
for (int j = 1; j <= cnt && i * p[j] < N; ++j)
{
vis[i * p[j]] = true;
if (i % p[j] == 0)
{ mu[i * p[j]] = 0; break; }
mu[i * p[j]] = mu[i] * mu[p[j]];
}
}
for (int i = 0; i < N; ++i) f[i] = 1;
int a = 0, b = 1;
for (int i = 1; i < N; ++i)
{
int w[3] = { binpow(b), 1, b };
for (int j = 1; i * j < N; ++j)
f[i * j] = (LL)f[i * j] * w[mu[j] + 1] % mod;
(a += b) %= mod; swap(a, b);
}
for (int i = 2; i < N; ++i)
f[i] = (LL)f[i - 1] * f[i] % mod;
}
int main ()
{
init();
int T; read(T);
while (T--)
{
read(n, m);
if (n > m) swap(n, m);
int res = 1;
for (int l = 1, r; l <= n; l = r + 1)
{
r = min(n / (n / l), m / (m / l));
res = (LL)res * binpow((LL)f[r] * binpow(f[l - 1]) % mod, (LL)(n / l) * (m / l) % (mod - 1)) % mod;
}
write(res), puts("");
}
return 0;
}