Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P3643 [APIO2016] 划艇

P3643 [APIO2016] 划艇

设 $f _ {i, j}$ 表示最后一个选择了第 $i$ 个学校,值为 $j$ 。那么有转移方程:

$$
f _ {i, j} = \sum _ {t < i} \sum _ {s < j} f _ {t, s}
$$

发现 $j$ 值域很大,考虑将其离散化,那么共有不超过 $2n$ 个区间。注意到转移中关于 $j$ 的顺序,记录一个位置 $<j$ 的前缀和。依此枚举每个区间,考虑第 $i$ 个点从第 $j$ 点的转移, 但是考虑到中间有一些点也包含了这个区间,那么考虑加上这些点会产生什么样的影响,这些点可以选择或者不选择,如果要选择的话,那么与当前点构成一个单增子序列,考虑这个序列的种数。。那么设 $[b + 1, a]$ 中有 $c$ 个包含该区间,区间大小为 $l$ ,那么即在 $0, 0, \ldots, 0(c个), 1, 2, \ldots, l$ 选择 $c$ 个数,即 $\binom {c + l - 1} c$ ,(当前这个一定要选,所以减一个),可以预处理出来。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include <cstdio>
#include <vector>
#include <algorithm>
#define fi first
#define se second
#define pb push_back
using namespace std;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0';
flag && (x = ~x + 1);
}
template <class Type, class ...rest>
void read (Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write (Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar('0' + x % 10);
}
typedef long long LL;
typedef pair <int, int> PII;
const int N = 510, mod = 1e9 + 7;
PII p[N];
int n, m, C[N], f[N], inv[N];
void init ()
{
inv[1] = 1;
for (int i = 2; i < N; ++i)
inv[i] = -(LL)(mod / i) * inv[mod % i] % mod;
}
int main ()
{
init();
read(n);
vector <int> ws;
for (int i = 1; i <= n; ++i)
{
read(p[i].fi, p[i].se);
ws.pb(p[i].fi), ws.pb(++p[i].se);
}
sort(ws.begin(), ws.end());
m = ws.erase(unique(ws.begin(), ws.end()), ws.end()) - ws.begin();
for (int i = 1; i <= n; ++i)
{
p[i].fi = lower_bound(ws.begin(), ws.end(), p[i].fi) - ws.begin();
p[i].se = lower_bound(ws.begin(), ws.end(), p[i].se) - ws.begin();
}
f[0] = 1;
for (int i = 1; i < m; ++i)
{
C[0] = 1;
for (int j = 1, t = ws[i] - ws[i - 1]; j <= n; ++j, ++t)
C[j] = (LL)C[j - 1] * t % mod * inv[j] % mod;
for (int j = n; j; --j)
if (p[j].fi <= i - 1 && p[j].se >= i)
{
int s = 0, c = 1;
for (int k = j - 1; ~k; --k)
{
s = (s + (LL)C[c] * f[k]) % mod;
if (p[k].fi <= i - 1 && p[k].se >= i) ++c;
}
f[j] = (f[j] + s) % mod;
}
}
int res = 0;
for (int i = 1; i <= n; ++i)
res = (res + f[i]) % mod;
write((res + mod) % mod);
return 0;
}