Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P3531 [POI2012]LIT-Letters

P3531 [POI2012]LIT-Letters

很容易想到冒泡排序的交换次数为逆序对数,考虑此题如何定义“排序”,显然 $a$ 中第 $k$ 个某字母一定和 $b$ 中第 $k$ 个某字母对齐,然后直接求逆序对数。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <cstdio>
#include <vector>
using namespace std;
typedef long long LL;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar(x % 10 + '0');
}
const int N = 1e6 + 10;
int n, w[N], tr[N];
char s[N], t[N];
void modify (int x)
{
for (; x <= n; x += x & -x)
tr[x]++;
}
int query (int x)
{
int res = 0;
for (; x; x -= x & -x)
res += tr[x];
return res;
}
int main ()
{
read(n);
scanf("%s%s", s + 1, t + 1);
static int cnt[26];
vector <int> p[26];
for (int i = 1; i <= n; i++)
p[t[i] - 'A'].push_back(i);
for (int i = 1; i <= n; i++)
w[i] = p[s[i] - 'A'][cnt[s[i] - 'A']++];
LL res = 0;
for (int i = n; i; i--)
{
res += query(w[i]);
modify(w[i]);
}
write(res);
return 0;
}