Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P3338 [ZJOI2014]力

P3338 [ZJOI2014]力

推式子:
$$
\begin {aligned}
E _ j & = \frac {F _ i} {q _ i} \\
& = \frac {\sum _ {i = 1} ^ {j - 1} \frac {q _ i q _ j} {(i - j) ^ 2} - \sum _ {i = j + 1} ^ n \frac {q _ i q _ j} {(i - j) ^ 2}} {q _ i} \\
& = \sum _ {i = 1} ^ {j - 1} \frac {q _ i} {(i - j) ^ 2} - \sum _ {i = j + 1} ^ n \frac {q _ i} {(i - j) ^ 2}
\end {aligned}
$$
令 $j - i = k$ ,则
$$
E _ j = \sum _ {k = 1} ^ {j - 1} \frac {q _ {j - k}} {k ^ 2} - \sum _ {k = -1} ^ {j - n} \frac {q _ {j - k}} {k ^ 2}
$$
发现形式像卷积,令 $f(x) = q _ x$ ,$g(x) = \frac 1 {x ^ 2}$ ,则
$$
E _ j = \sum _ {k = 1} ^ {j - 1} f(j - k) g(k) - \sum _ {k = -1} ^ {j - n} f(j - k) g(k)
$$

将其转化为卷积形式,将两项分开考察:
$$
\begin {aligned}
& \sum _ {k = 1} ^ {j - 1} f(j - k) g(k) \\
= & \sum _ {k = 0} ^ j f(j - k) g(k) - f(0)g(j) - f(j)g(0) \\
= & F * G(j) - f(0)g(j) - f(j)g(0)
\end {aligned}
$$
通过 $f(0) = g(0) = 0$ ,直接卷积即可。

第二项的 $k$ 是负的,先把它变成正的,
$$
\begin {aligned}
& \sum _ {k = -1} ^ {j - n} f(j - k) g(k) \\
= & \sum _ {k = 1} ^ {n - j} f(j + k) g(k) \\
\end {aligned}
$$

$G(x) = \displaystyle \sum _ ig(i) x ^ i$ 将会贡献到 $i$ 上,不满足卷积了。我们希望构造一个不影响答案的另一个生成函数贡献到 $-i$ 上,且需要计算的项在正的幂上。 $\displaystyle G ^ {‘} (x) = \sum _ i g(i) x ^ {-i} = \sum _ i g(i - n - 1) x ^ {n - i + 1}$ ,实际上将答案贡献到了 $n - i + 1$ 上,所以取答案时增加 $n$ 。
$$
\begin {aligned}
& \sum _ {k = 1} ^ {n - j} f(j + k) g(k) \\
= & \sum _ {k = j + 1} ^ {n + j} f(k) g ^ {‘}(n + j - k + 1) \\
= & F * G ^ {‘} (n + j + 1) - \sum _ {k = 0} ^ j f(k) g ^ {‘}(n + j - k + 1) - \sum _ {k = n + 1} ^ {n + j} f(k) g ^ {‘}(n + j - k + 1)
\end {aligned}
$$
$f$ 和 $g$ 中大于 $n$ 的值为 $0$ 即可。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const double PI = acos(-1);
const int N = 8e5 + 10;
struct Complex
{
double x, y;
Complex() {}
Complex(double _x, double _y)
{
x = _x;
y = _y;
}
Complex operator+(Complex k)
{
return Complex(x + k.x, y + k.y);
}
Complex operator-(Complex k)
{
return Complex(x - k.x, y - k.y);
}
Complex operator*(Complex k)
{
return Complex(x * k.x - y * k.y, x * k.y + y * k.x);
}
} f[N], g[N];
double q[N];
int n, m, bit, tot, rev[N];
void fft(Complex *x, int op)
{
for (int i = 0; i < tot; i++)
if (rev[i] < i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
Complex w1 = Complex(cos(PI / mid), sin(op * PI / mid));
for (int i = 0; i < tot; i += (mid << 1))
{
Complex cur = Complex(1, 0);
for (int j = 0; j < mid; j++, cur = cur * w1)
{
Complex p = x[i + j], q = cur * x[i + j + mid];
x[i + j] = p + q, x[i + j + mid] = p - q;
}
}
}
if (op == -1)
for (int i = 0; i < tot; i++)
x[i].x = x[i].x / tot;
}
int main()
{
scanf("%d", &n);
while ((1 << bit) < (n + 1 << 1))
bit++;
tot = 1 << bit;
for (int i = 1; i < tot; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << bit - 1);
for (int i = 1; i <= n; i++)
scanf("%lf", &q[i]);
static double res[N];
for (int i = 0; i < tot; i++)
res[i] = 0;
for (int i = 0; i < tot; i++)
{
if (i > 0 && i <= n)
{
f[i].x = q[i];
if (i < n)
g[i].x = 1.0 / i / i;
}
else
f[i].x = g[i].x = 0;
f[i].y = g[i].y = 0;
}
fft(f, 1);
fft(g, 1);
for (int i = 0; i < tot; i++)
f[i] = f[i] * g[i];
fft(f, -1);
for (int i = 1; i <= n; i++)
res[i] += f[i].x;
for (int i = 0; i < tot; i++)
{
if (i > 0 && i <= n)
{
f[i].x = q[i];
g[i].x = 1.0 / (i - n - 1) / (i - n - 1);
}
else
f[i].x = g[i].x = 0;
f[i].y = g[i].y = 0;
}
fft(f, 1);
fft(g, 1);
for (int i = 0; i < tot; i++)
f[i] = f[i] * g[i];
fft(f, -1);
for (int i = 1; i <= n; i++)
res[i] -= f[i + n + 1].x;
for (int i = 1; i <= n; i++)
printf("%.3lf\n", res[i]);
return 0;
}