Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P3157 [CQOI2011]动态逆序对

P3157 [CQOI2011]动态逆序对

树套树,线段树维护区间有哪些数,内部为了方便用 pbds 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <cstdio>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
template <class Type>
void read (Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0';
flag && (x = ~x + 1);
}
template <class Type, class ...rest>
void read (Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write (Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar('0' + x % 10);
}
typedef long long LL;
typedef tree <int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> Tree;
const int N = 1e5 + 10;
LL ans;
int n, m, w[N], p[N];
struct Node { int l, r; Tree t; } tr[N << 2];
void build (int l = 1, int r = n, int x = 1)
{
tr[x].l = l, tr[x].r = r;
for (int i = l; i <= r; ++i) tr[x].t.insert(w[i]);
if (l == r) return;
int mid = l + r >> 1;
build(l, mid, x << 1), build(mid + 1, r, x << 1 | 1);
}
void modify (int t, int x = 1)
{
tr[x].t.erase(w[t]);
if (tr[x].l == tr[x].r) return;
int mid = tr[x].l + tr[x].r >> 1;
modify(t, x << 1 | (t > mid));
}
int QueryLess (int l, int r, int k, int x = 1)
{
if (l > r || tr[x].l > r || l > tr[x].r) return 0;
if (tr[x].l >= l && tr[x].r <= r) return tr[x].t.order_of_key(k);
return QueryLess(l, r, k, x << 1) + QueryLess(l, r, k, x << 1 | 1);
}
int QueryGreater (int l, int r, int k, int x = 1)
{
if (l > r || tr[x].l > r || l > tr[x].r) return 0;
if (tr[x].l >= l && tr[x].r <= r) return tr[x].t.size() - tr[x].t.order_of_key(k + 1);
return QueryGreater(l, r, k, x << 1) + QueryGreater(l, r, k, x << 1 | 1);
}
int main ()
{
read(n, m);
for (int i = 1; i <= n; ++i)
read(w[i]), p[w[i]] = i;
build();
for (int i = 1; i <= n; ++i)
ans += QueryGreater(1, i - 1, w[i]);
for (int i = 1, a; i <= m; ++i)
{
write(ans), puts("");
read(a);
modify(p[a]);
ans -= QueryGreater(1, p[a] - 1, a) + QueryLess(p[a] + 1, n, a);
}
return 0;
}