Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P2868 [USACO07DEC]Sightseeing Cows G

P2868 [USACO07DEC]Sightseeing Cows G

每个边都有边权,每个点都有点权,题意即找到一个环,使得经过的点权和与边权和的比值最大,对于一个环,点数和边数一样,我们将所有的点权放在到达该点的边上,记点权为 $f _ i$ ,边权为 $w _ i$ ,经过了 $k$ 条边,则要使得 $\frac {\displaystyle \sum _ {i = 1} ^ k f _ i} {\displaystyle \sum _ {i = 1} ^ k w _ i}$ 最大,考虑分数规划。

设当前二分平均值为 $x$ ,则 $x$ 合法的条件为:
$$
\begin{aligned}
& \frac {\sum _ {i = 1} ^ k f _ i} {\sum _ {i = 1} ^ k w _ i} \ge x\\
\Longrightarrow & \sum _ {i = 1} ^ k f _ i \ge x \sum _ {i = 1} ^ k w _ i\\
\Longrightarrow & \sum _ {i = 1} ^ k f _ i - x w _ i \ge 0\\
\end{aligned}
$$
即需要找到一个正环,所有点都可以作为起点,所以都放进队列里做 spfa 最长路即可。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
const double eps = 1e-4;
const int N = 1e3 + 10, M = 5e3 + 10;
double d[N];
bool vis[N];
int n, m, cnt[N], f[N];
int idx = -1, hd[N], nxt[M], edg[M], wt[M];
bool check(double mid)
{
for (int i = 1; i <= n; i++)
d[i] = cnt[i] = 0;
queue <int> q;
for (int i = 1; i <= n; i++)
{
q.push(i);
vis[i] = true;
}
while (!q.empty())
{
int t = q.front();
q.pop();
vis[t] = false;
for (int i = hd[t]; ~i; i = nxt[i])
if (d[t] + f[t] - mid * wt[i] > d[edg[i]])
{
d[edg[i]] = d[t] + f[t] - mid * wt[i];
cnt[edg[i]] = cnt[t] + 1;
if (cnt[edg[i]] >= n)
return true;
if (!vis[edg[i]])
{
q.push(edg[i]);
vis[edg[i]] = true;
}
}
}
return false;
}
void add(int x, int y, int z)
{
nxt[++idx] = hd[x];
hd[x] = idx;
edg[idx] = y;
wt[idx] = z;
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
hd[i] = -1;
for (int i = 1; i <= n; i++)
cin >> f[i];
for (int i = 1, a, b, c; i <= m; i++)
{
cin >> a >> b >> c;
add(a, b, c);
}
double l = 0, r = N, mid;
while (r - l > eps)
{
mid = (l + r) / 2;
if (check(mid))
l = mid;
else
r = mid;
}
printf("%.2lf", l);
return 0;
}