Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P2398 GCD SUM

P2398 GCD SUM

$$
\begin{aligned}
f(n)
= & \sum_{x = 1} ^ n \sum_{y = 1} ^ n gcd(x, y) \\
= & \sum_{x = 1} ^ n \sum_{y = 1} ^ n \sum_{d | gcd(i, j)} \varphi (d) \\
= & \sum_{x = 1} ^ n \sum_{y = 1} ^ n \sum_{d | gcd(i, j)} \varphi(d) \\
= & \sum_{d = 1} ^ n \varphi (d) \left \lfloor \frac n d \right \rfloor ^ 2
\end{aligned}
$$

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int n;
bool vis[N];
int cnt, primes[N];
LL phi[N], s[N];
void init()
{
phi[1] = 1;
for (int i = 2; i < N; i++)
{
if (!vis[i])
{
primes[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && i * primes[j] < N; j++)
{
vis[i * primes[j]] = true;
if (i % primes[j] == 0)
{
phi[i * primes[j]] = phi[i] * primes[j];
break;
}
phi[i * primes[j]] = phi[i] * phi[primes[j]];
}
}
for (int i = 1; i < N; i++)
s[i] = s[i - 1] + phi[i];
}
int main()
{
init();
scanf("%d", &n);
LL res = 0;
for (int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
res += (s[r] - s[l - 1]) * (LL)(n / l) * (LL)(n / l);
}
printf("%lld", res);
return 0;
}