Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P2260 [清华集训2012]模积和

P2260 [清华集训2012]模积和

推式子:
$$
\begin {aligned}
& \sum _ {i = 1} ^ n \sum _ {j = 1} ^ m (n \bmod i) (m \bmod j) [i \neq j] \\
= & (\sum _ {i = 1} ^ n n \bmod i) (\sum _ {j = 1} ^ m m \bmod j) - \sum _ {i = 1} ^ n (n \bmod i)(m \bmod i) \\
= & (\sum _ {i = 1} ^ n n - i \left \lfloor \frac n i \right \rfloor) (\sum _ {j = 1} ^ m m - j \left \lfloor \frac m j \right \rfloor) - \sum _ {i = 1} ^ n (n - i \left \lfloor \frac n i \right \rfloor)(m - i\left \lfloor \frac m i \right \rfloor) \\
= & (n ^ 2 - \sum _ {i = 1} ^ n i \left \lfloor \frac n i \right \rfloor) (m ^ 2 - \sum _ {j = 1} ^ m j \left \lfloor \frac m j \right \rfloor) - \sum _ {i = 1} ^ n (nm - mi \left \lfloor \frac n i \right \rfloor - ni \left \lfloor \frac m i \right \rfloor + i ^ 2 \left \lfloor \frac n i \right \rfloor \left \lfloor \frac m i \right \rfloor) \\
\end {aligned}
$$
关于计算前缀平方和,有公式:
$$
\sum _ {i = 1} ^ k i ^ 2 = \frac {k (k + 1) (2k + 1)} 6
$$
整除分块可以在 $O(\sqrt n)$ 的时间内完成计算。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar(x % 10 + '0');
}
const int mod = 19940417, inv2 = 9970209, inv6 = 3323403;
struct modint
{
int k;
modint (int _)
{
k = _;
}
friend modint operator - (modint a, modint b)
{
return (a.k - b.k) % mod;
}
friend modint operator + (modint a, modint b)
{
return (a.k + b.k) % mod;
}
friend modint operator * (modint a, modint b)
{
return (LL)a.k * b.k % mod;
}
};
modint s_1 (modint k)
{
return (k + 1) * k * inv2;
}
modint s_2 (modint k)
{
return k * (k + 1) * (2 * k + 1) * inv6;
}
int main ()
{
int n, m;
read(n), read(m);
n > m && (swap(n, m), 0);
modint a = modint(n) * n, b = modint(m) * m, c = 0;
for (int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
a = a - (s_1(r) - s_1(l - 1)) * (n / l);
}
for (int l = 1, r; l <= m; l = r + 1)
{
r = m / (m / l);
b = b - (s_1(r) - s_1(l - 1)) * (m / l);
}
for (int l = 1, r; l <= n; l = r + 1)
{
r = min(n / (n / l), m / (m / l));
c = c - modint(r - l + 1) * n * m + (s_1(r) - s_1(l - 1)) * (n / l) * m + (s_1(r) - s_1(l - 1)) * (m / l) * n - (s_2(r) - s_2(l - 1)) * (n / l) * (m / l);
}
write(((a * b + c).k + mod) % mod);
return 0;
}