Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P2178 [NOI2015] 品酒大会

P2178 [NOI2015] 品酒大会

处理出 $height$ ,那么对于任意一个区间,对 $min \{height\}$ 的产生贡献。考虑用单调栈统计答案,注意到需要左右子区间的最值,一般的单调栈不好处理。考虑建出笛卡尔树,从子节点得到信息。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...rest>
void read(Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write(Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
template <class Type>
void chkmax (Type &x, Type k) { if (k > x) x = k; }
template <class Type>
void chkmin (Type &x, Type k) { if (k < x) x = k; }
typedef long long LL;
const LL Inf = 1e18;
const int N = 6e5 + 10, inf = 1e9;
struct Node { int s[2], l, r, mx, mn; } tr[N];
char str[N];
int top, stk[N];
LL s[N], mx[N];
int n, w[N], m, sa[N], rnk[N], ht[N], x[N], y[N], c[N];
void bucsort ()
{
for (int i = 1; i <= m; ++i) c[i] = 0;
for (int i = 1; i <= n; ++i) ++c[x[i]];
for (int i = 2; i <= m; ++i) c[i] += c[i - 1];
for (int i = n; i; i--) sa[c[x[y[i]]]--] = y[i];
}
void init ()
{
for (int i = 1; i <= n; ++i)
x[i] = str[i] - 'a' + 1, y[i] = i, sa[i] = 0;
bucsort();
for (int k = 1; k <= n; k <<= 1)
{
int cnt = 0;
for (int i = n - k + 1; i <= n; ++i) y[++cnt] = i;
for (int i = 1; i <= n; ++i)
if (sa[i] > k) y[++cnt] = sa[i] - k;
bucsort();
for (int i = 1; i <= n; ++i) y[i] = x[i];
x[sa[1]] = cnt = 1;
for (int i = 2; i <= n; ++i)
x[sa[i]] = cnt += (y[sa[i]] ^ y[sa[i - 1]] || y[sa[i] + k] ^ y[sa[i - 1] + k]);
if ((m = cnt) == n) break;
}
for (int i = 1; i <= n; ++i) rnk[sa[i]] = i;
for (int i = 1, k = 0; i <= n; ++i)
{
int j = sa[rnk[i] - 1];
if (k) --k;
while (str[i + k] == str[j + k]) ++k;
ht[rnk[i]] = k;
}
}
void calc (int x)
{
tr[x].l = tr[x].r = x;
tr[x].mx = -inf, tr[x].mn = inf;
if (tr[x].s[0])
calc(tr[x].s[0]), tr[x].l = tr[tr[x].s[0]].l;
if (tr[x].s[1])
calc(tr[x].s[1]), tr[x].r = tr[tr[x].s[1]].r;
chkmax(tr[x].mx, tr[tr[x].s[0]].mx), chkmin(tr[x].mn, tr[tr[x].s[0]].mn);
chkmax(tr[x].mx, tr[tr[x].s[1]].mx), chkmin(tr[x].mn, tr[tr[x].s[1]].mn);
s[ht[x]] += (LL)(tr[x].r - x + 1) * (x - tr[x].l + 1);
chkmax(mx[ht[x]], (LL)max(tr[tr[x].s[0]].mx, w[sa[tr[x].l - 1]]) * max(w[sa[x]], tr[tr[x].s[1]].mx));
chkmax(mx[ht[x]], (LL)min(tr[tr[x].s[0]].mn, w[sa[tr[x].l - 1]]) * min(w[sa[x]], tr[tr[x].s[1]].mn));
chkmax(tr[x].mx, w[sa[x]]), chkmin(tr[x].mn, w[sa[x]]);
}
int main ()
{
m = 26, read(n);
if (n == 1) return puts("0 0"), 0;
scanf("%s", str + 1);
init();
for (int i = 1; i <= n; ++i) read(w[i]);
for (int i = 2; i <= n; ++i)
{
int t = top;
while (t && ht[stk[t]] >= ht[i]) --t;
if (t) tr[stk[t]].s[1] = i;
if (t < top) tr[i].s[0] = stk[t + 1];
stk[top = ++t] = i;
}
for (int i = 0; i < n; ++i) mx[i] = -Inf;
tr[0].mn = inf, tr[0].mx = -inf;
calc(stk[1]);
for (int i = n - 2; ~i; --i)
s[i] += s[i + 1], chkmax(mx[i], mx[i + 1]);
for (int i = 0; i < n; ++i)
write(s[i]), putchar(' '), write(s[i] ? mx[i] : 0), puts("");
return 0;
}