Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P2000 拯救世界

P2000 拯救世界

将所有的对应的生成函数写成封闭形式,乘起来,即 $(\frac 1 {1 - x}) ^ 5$ ,再展开 $(1 + x + x ^ 2 + \ldots) ^ 5$ 。第 $n$ 项即 $\binom {n + 4} 4$ 。注意到 $n$ 很大,需要高精度。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1e6 + 10, mod = 998244353;
int rev[N];
int binpow (int b, int k = mod - 2)
{
int res = 1;
for (; k; k >>= 1, b = (LL)b * b % mod)
if (k & 1) res = (LL)res * b % mod;
return res;
}
void ntt (int *x, int bit, int op)
{
int tot = 1 << bit;
for (int i = 1; i < tot; ++i)
if ((rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1) > i)
swap(x[rev[i]], x[i]);
for (int mid = 1; mid < tot; mid <<= 1)
{
int w1 = binpow(3, (mod - 1) / (mid << 1));
if (!~op) w1 = binpow(w1);
for (int i = 0; i < tot; i += mid << 1)
for (int j = 0, k = 1; j < mid; ++j, k = (LL)k * w1 % mod)
{
int p = x[i | j], q = (LL)k * x[i | j | mid] % mod;
x[i | j] = (p + q) % mod, x[i | j | mid] = (p - q) % mod;
}
}
if (~op) return;
int itot = binpow(tot);
for (int i = 0; i < tot; ++i)
x[i] = (LL)x[i] * itot % mod;
}
class LargeNumber
{
int sign;
vector <int> w;
friend void adj(LargeNumber &x)
{
while (!x.w.empty() && !x.w.back()) x.w.pop_back();
if (x.w.empty()) x.sign = 0;
}
friend int cmp(LargeNumber &x, LargeNumber &y)
{
if (x.sign ^ y.sign)
return x.sign < y.sign ? -1 : 1;
if (x.size() ^ y.size())
return x.size() < y.size() ? -1 : 1;
for (int i = x.size() - 1; ~i; i--)
if (x[i] ^ y[i]) return x[i] < y[i] ? -1 : 1;
return 0;
}
friend LargeNumber plus(LargeNumber &x, LargeNumber &y)
{
LargeNumber res;
res.sign = 1;
res.w.resize(max(x.size(), y.size()) + 1);
for (int i = 0; i + 1 < res.size(); i++)
{
if (i < x.size()) res[i] += x[i];
if (i < y.size()) res[i] += y[i];
if (res[i] > 9) x[i + 1]++, res[i] -= 10;
}
adj(res);
return res;
}
friend LargeNumber dec(LargeNumber &x, LargeNumber &y)
{
LargeNumber res;
res.sign = 1;
res.w.resize(max(x.size(), y.size()));
for (int i = 0; i < res.size(); i++)
{
res[i] = x[i] - y[i];
if (res[i] < 0) x[i + 1]--, res[i] += 10;
}
adj(res);
return res;
}
friend void div2(LargeNumber &x)
{
bool flag = false;
for (int i = x.size() - 1; ~i; i--)
{
int t = x[i] + flag * 10;
flag = t & 1;
x[i] = t >> 1;
}
adj(x);
}
public:
LargeNumber() {}
template <class Type>
LargeNumber(Type x)
{
if (x < 0) sign = -1, x = ~x + 1;
else if (x > 0) sign = 1;
else sign = 0;
while (x)
w.push_back(x % 10), x /= 10;
}
void input()
{
sign = 1;
char c;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (sign = -1);
w.push_back(c - '0');
while ((c = getchar()) >= '0' && c <= '9')
w.push_back(c - '0');
reverse(w.begin(), w.end());
}
void output()
{
if (!sign) putchar('0');
if (sign == -1) putchar('-');
for (int i = w.size() - 1; ~i; i--)
putchar(w[i] + '0');
}
int size () { return w.size(); }
int &operator[](int x) { return w[x]; }
friend bool operator!(LargeNumber x) { return !x.sign; }
friend LargeNumber operator-(LargeNumber x) { x.sign *= -1; return x; }
friend bool operator!=(LargeNumber x, LargeNumber y) { return cmp(x, y); }
friend bool operator==(LargeNumber x, LargeNumber y) { return !cmp(x, y); }
friend bool operator<(LargeNumber x, LargeNumber y) { return cmp(x, y) == -1; }
friend bool operator>(LargeNumber x, LargeNumber y) { return cmp(x, y) == 1; }
friend bool operator<=(LargeNumber x, LargeNumber y) { return cmp(x, y) ^ 1; }
friend bool operator>=(LargeNumber x, LargeNumber y) { return ~cmp(x, y); }
friend LargeNumber operator*(LargeNumber x, LargeNumber y)
{
LargeNumber res;
res.sign = x.sign * y.sign;
res.w.resize(x.size() + y.size());
static int A[N], B[N], C[N];
int bit = 0;
while (1 << bit < res.size()) ++bit;
int tot = 1 << bit;
for (int i = 0; i < x.size(); ++i) A[i] = x.w[i];
for (int i = 0; i < y.size(); ++i) B[i] = y.w[i];
for (int i = x.size(); i < tot; i++) A[i] = 0;
for (int i = y.size(); i < tot; i++) B[i] = 0;
ntt(A, bit, 1), ntt(B, bit, 1);
for (int i = 0; i < tot; i++)
C[i] = (LL)A[i] * B[i] % mod;
ntt(C, bit, -1);
for (int i = 0; i < res.size(); i++)
res[i] = (C[i] + mod) % mod;
for (int i = 0; i + 1 < res.size(); i++)
{
res[i + 1] += res[i] / 10;
res[i] %= 10;
}
adj(res);
return res;
}
friend LargeNumber operator/(LargeNumber x, int k)
{
LargeNumber res = x;
if (k < 0) k = -k, res.sign ^= 1;
for (int i = res.size() - 1; ~i; --i)
{
if (i) res[i - 1] += res[i] % k * 10;
res[i] /= k;
}
adj(res);
return res;
}
friend LargeNumber operator+(LargeNumber x, LargeNumber y)
{
if (!x.sign) return y;
if (!y.sign) return x;
if (x.sign == 1 && y.sign == 1) return plus(x, y);
if (x.sign == -1 && y.sign == -1)
{
LargeNumber res = plus(x, y);
res.sign = -1;
return res;
}
if (x.sign == -1 && y.sign == 1) swap(x, y);
y.sign = 1;
if (x < y)
{
LargeNumber res = dec(y, x);
res.sign = -1;
return res;
}
return dec(x, y);
}
friend LargeNumber operator-(LargeNumber x, LargeNumber y) { return x + (-y); }
friend LargeNumber operator^(LargeNumber b, LargeNumber k)
{
LargeNumber res(1);
for (; k.sign == 1; b = b * b, div2(k))
if (k[0] & 1) res = res * b;
return res;
}
friend LargeNumber operator++(LargeNumber &x) { return x = (x + LargeNumber(1)); }
friend LargeNumber operator--(LargeNumber &x) { return x = (x - LargeNumber(1)); }
friend LargeNumber operator+=(LargeNumber &x, const LargeNumber y) { return x = (x + y); }
friend LargeNumber operator-=(LargeNumber &x, const LargeNumber y) { return x = (x - y); }
friend LargeNumber operator*=(LargeNumber &x, const LargeNumber y) { return x = (x * y); }
friend LargeNumber operator/=(LargeNumber &x, const int y) { return x = (x / y); }
friend LargeNumber operator^=(LargeNumber &x, const LargeNumber y) { return x = (x ^ y); }
friend void swap(LargeNumber &x, LargeNumber &y) { LargeNumber tmp = x; x = y, y = tmp; }
friend LargeNumber abs(LargeNumber x) { if (x.sign < 0) x.sign = 1; return x; }
friend void chkmin(LargeNumber &x, LargeNumber k) { if (k < x) x = k; }
friend void chkmax(LargeNumber &x, LargeNumber k) { if (k > x) x = k; }
friend LargeNumber min(const LargeNumber &x, const LargeNumber &y) { return x > y ? y : x; }
friend LargeNumber max(const LargeNumber &x, const LargeNumber &y) { return x > y ? x : y; }
};