Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

P1471 方差

P1471 方差

开始没有看到输入可以是实数,就全部 $RE$ 了。

方差:
$$
\begin {aligned}
s ^ 2 &= \frac 1 n (\sum _ {i = 1} ^ n (A _ i - \bar A) ^ 2)\\
&= \frac 1 n [\sum _ {i = 1} ^ n (A_ i ^ 2 - 2A_i\bar A + \bar A ^ 2)]\\
&= \frac 1 n (\sum _ {i = 1} ^ n A_ i ^ 2 - 2\bar A\sum _ {i = 1} ^ n A_ i + \sum _ {i = 1} ^ n\bar A ^ 2)\\
&= \frac 1 n (\sum _ {i = 1} ^ n A_ i ^ 2 - 2\frac {(\sum _ {i = 1} ^ n A_ i) ^ 2} n + \frac {(\sum _ {i = 1} ^ n A_ i) ^ 2} n)\\
&= \frac 1 n \sum _ {i = 1} ^ n A_ i ^ 2 - \bar A ^ 2
\end {aligned}
$$
所以线段树里维护和、平方和即可。

区间修改维护平方和:
$$
\begin {aligned}
\sum _ {i = 1} ^ n (A _ i + k) ^ 2 & = \sum _ {i = 1} ^ n (A _ i ^ 2 - 2kA_i + k ^ 2) \\
& = \sum _ {i = 1} ^ n A _i ^2 - 2k \sum _ {i = 1} ^ n A _ i + nk ^ 2
\end {aligned}
$$

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include <cstdio>
using namespace std;
const int N = 1e5 + 10;
int n, m;
double w[N];
struct Node
{
int l, r;
double s, s2, tag;
} tr[N << 2];
void cal(Node &x, double k)
{
x.s2 += 2 * k * x.s + (x.r - x.l + 1) * k * k;
x.s += (x.r - x.l + 1) * k;
x.tag += k;
}
void pushup(Node &x, Node l, Node r)
{
x.l = l.l, x.r = r.r;
x.s = l.s + r.s;
x.s2 = l.s2 + r.s2;
}
void pushdown(int x)
{
cal(tr[x << 1], tr[x].tag);
cal(tr[x << 1 | 1], tr[x].tag);
tr[x].tag = 0;
}
void build(int x, int l, int r)
{
if (l == r)
{
tr[x].l = tr[x].r = l;
tr[x].s = w[l];
tr[x].s2 = w[l] * w[l];
return;
}
int mid = l + r >> 1;
build(x << 1, l, mid);
build(x << 1 | 1, mid + 1, r);
pushup(tr[x], tr[x << 1], tr[x << 1 | 1]);
}
void modify(int x, int l, int r, double k)
{
if (tr[x].l >= l && tr[x].r <= r)
{
cal(tr[x], k);
return;
}
if (tr[x].tag)
pushdown(x);
int mid = tr[x].l + tr[x].r >> 1;
if (l <= mid)
modify(x << 1, l, r, k);
if (r > mid)
modify(x << 1 | 1, l, r, k);
pushup(tr[x], tr[x << 1], tr[x << 1 | 1]);
}
Node query(int x, int l, int r)
{
if (tr[x].l >= l && tr[x].r <= r)
return tr[x];
if (tr[x].tag)
pushdown(x);
int mid = tr[x].l + tr[x].r >> 1;
if (r <= mid)
return query(x << 1, l, r);
if (l > mid)
return query(x << 1 | 1, l, r);
Node res;
pushup(res, query(x << 1, l, r), query(x << 1 | 1, l, r));
return res;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%lf", &w[i]);
build(1, 1, n);
for (int op, l, r; m; m--)
{
scanf("%d%d%d", &op, &l, &r);
if (op == 1)
{
double k;
scanf("%lf", &k);
modify(1, l, r, k);
continue;
}
Node t = query(1, l, r);
double avrg = (double)t.s / (t.r - t.l + 1);
if (op == 2)
printf("%.4lf\n", avrg);
else
printf("%.4lf\n", (double)t.s2 / (t.r - t.l + 1) - avrg * avrg);
}
return 0;
}