P1390 公约数的和
先计算:
$$
\begin{aligned}
f(n)
= & \sum_{x = 1} ^ n \sum_{y = 1} ^ n gcd(x, y) \\
= & \sum_{x = 1} ^ n \sum_{y = 1} ^ n \sum_{d | gcd(i, j)} \varphi (d) \\
= & \sum_{x = 1} ^ n \sum_{y = 1} ^ n \sum_{d | gcd(i, j)} \varphi(d) \\
= & \sum_{d = 1} ^ n \varphi (d) \left \lfloor \frac n d \right \rfloor ^ 2
\end{aligned}
$$
考虑删去重复的部分。首先是 $i = j$ 的情况,$gcd(i, i) = i$ ,因此这部分重复的有 $\displaystyle \sum _ {i = 1} ^ n i$ ,即 $n (n + 1) / 2$ ,对于剩下的部分,因为 $i$ 和 $j$ 可以交换,所以计算了两次,除以 $2$ 即可。
查看代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
| #include <cstdio> using namespace std; typedef long long LL; const int N = 2e6 + 10; LL n; bool vis[N]; LL cnt, primes[N]; LL phi[N], s[N]; void init() { phi[1] = 1; for (int i = 2; i < N; i++) { if (!vis[i]) { primes[++cnt] = i; phi[i] = i - 1; } for (int j = 1; j <= cnt && i * primes[j] < N; j++) { vis[i * primes[j]] = true; if (i % primes[j] == 0) { phi[i * primes[j]] = phi[i] * primes[j]; break; } phi[i * primes[j]] = phi[i] * phi[primes[j]]; } } for (int i = 1; i < N; i++) s[i] = s[i - 1] + phi[i]; } int main() { init(); scanf("%d", &n); LL res = 0; for (int l = 1, r; l <= n; l = r + 1) { r = n / (n / l); res += (s[r] - s[l - 1]) * (LL)(n / l) * (LL)(n / l); } printf("%lld", (res - n * (n + 1) / 2) / 2); return 0; }
|