Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

ODT 模板

区间覆盖操作问题中的暴力做法。

区间次幂和。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#include <cstdio>
#include <set>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, int> PLI;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar(x % 10 + '0');
}
const int N = 1e5 + 10, mod = 1e9 + 7;
struct Node
{
int l, r;
mutable LL v;
bool operator<(const Node &_) const
{
return l < _.l;
}
};
typedef set<Node>::iterator SI;
set<Node> tr;
int n, m, w[N], seed, vmax;
int get()
{
int res = seed;
seed = ((LL)seed * 7 + 13) % mod;
return res;
}
int binpow(int b, int k, int p)
{
int res = 1;
while (k)
{
if (k & 1)
res = (LL)res * b % p;
b = (LL)b * b % p;
k >>= 1;
}
return res;
}
SI split(int x)
{
SI cur = tr.lower_bound((Node){x});
if (cur != tr.end() && cur->l == x)
return cur;
Node t = *(--cur);
tr.erase(cur);
tr.insert((Node){t.l, x - 1, t.v});
return tr.insert((Node){x, t.r, t.v}).first;
}
LL kth(int l, int r, int k)
{
vector<PLI> p;
for (SI R = split(r + 1), L = split(l); L != R; L++)
p.push_back(make_pair(L->v, L->r - L->l + 1));
sort(p.begin(), p.end());
for (PLI i : p)
{
k -= i.second;
if (k <= 0)
return i.first;
}
}
int main()
{
read(n), read(m), read(seed), read(vmax);
for (int i = 1; i <= n; i++)
{
w[i] = get() % vmax + 1;
tr.insert((Node){i, i, w[i]});
}
tr.insert((Node){n + 1, n + 1, 0});
while (m--)
{
int op = get() % 4 + 1, l = get() % n + 1, r = get() % n + 1;
l > r && (swap(l, r), 0);
if (op == 1)
{
int x = get() % vmax + 1;
for (SI R = split(r + 1), L = split(l); L != R; L++)
L->v += x;
}
else if (op == 2)
{
int x = get() % vmax + 1;
tr.erase(split(l), split(r + 1));
tr.insert((Node){l, r, x});
}
else if (op == 3)
{
int x = get() % (r - l + 1) + 1;
write(kth(l, r, x)), puts("");
}
else if (op == 4)
{
int x = get() % vmax + 1, y = get() % vmax + 1;
int res = 0;
for (SI R = split(r + 1), L = split(l); L != R; L++)
(res += (LL)binpow(L->v % y, x, y) * (L->r - L->l + 1) % y) %= y;
write(res), puts("");
}
}
return 0;
}