Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

高斯消元模板

用于求多元一次方程组的解。

实数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
double A[N][N]; // 方程 0 ~ n - 1, 第 n 项为常数项
void Gauss()
{
for (int k = 0; k < n; ++k)
{
int t = k;
for (int i = k + 1; i < n; ++i)
if (fabs(A[i][k]) > fabs(A[t][k])) t = i;
if (fabs(A[t][k]) < eps) continue; // No Only-one Solution
swap(A[t], A[k]);
for (int i = 0; i < n; ++i)
{
if (i == k) continue;
double t = A[i][k] / A[k][k];
for (int j = k + 1; j <= n; ++j)
A[i][j] -= A[k][j] * t;
}
}
for (int i = 0; i < n; ++i) A[i][n] /= A[i][i];
// ans[i] = A[i][n]
}
取模意义下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int A[N][N]; // 方程 0 ~ n - 1, 第 n 项为常数项
void Gauss ()
{
for (int k = 0; k < n; ++k)
{
int t = -1;
for (int i = k; i < n && !~t; ++i)
if (A[i][k]) t = i;
if (!~t) continue; // No Only-one Solution
swap(A[t], A[k]);
for (int i = 0; i < n; ++i) if (i ^ k)
for (int j = k + 1,t = (LL)A[i][k] * binpow(A[k][k], mod - 2) % mod; j <= n; ++j)
(A[i][j] -= (LL)A[k][j] * t % mod) %= mod;
}
for (int i = 0; i < n; ++i)
A[i][n] = (LL)A[i][n] * binpow(A[i][i], mod - 2) % mod;
// ans[i] = A[i][n]
}
异或
1
2
3
4
5
6
7
8
9
10
11
12
13
bitset<N> A[N]; // 方程 1 ~ n,第 0 项为常数项
void Gauss()
{
for (int k = 1; k <= n; ++k)
{
int t = k;
while (t <= n && !A[t][k]) ++t;
if (t > n) continue; // No Only-one Solution
swap(A[t], A[k]);
for (int i = 1; i <= n; ++i)
if (i ^ k && A[i][k]) A[i] ^= A[k];
}
}