Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

CF895C Square Subsets

LuoGu: CF895C Square Subsets

CF: C. Square Subsets

给一个数组,求满足乘积为平方数的非空子集有多少个。

对于平方数,满足每个质数因子的指数为偶数,将每个数写作一个二进制数,每一位表示该质数因子的指数模二,那么乘积相当于异或,问题转化为异或和为 $0$ 的非空子集有多少个。

将所有数插入线性基,线性基大小为 $cnt$ ,那么剩下的 $n - cnt$ 可以随意选择,减去一个空集即为答案。

另外一个做法是状压DP。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <cstdio>
#include <vector>
using namespace std;
typedef long long LL;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar(x % 10 + '0');
}
const int N = 1e5 + 10, mod = 1e9 + 7;
int n, cnt, bs[N];
vector <int> p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67};
int binpow (int b, int k)
{
int res = 1;
while (k)
{
k & 1 && (res = (LL)res * b % mod);
b = (LL)b * b % mod;
k >>= 1;
}
return res;
}
void insert (int x)
{
for (int i = p.size() - 1; ~i; i--)
if (x >> i & 1)
{
if (!bs[i])
return bs[i] = x, cnt++, void();
x ^= bs[i];
}
}
int main ()
{
read(n);
for (int i = 1, k; i <= n; i++)
{
int t = 0;
read(k);
for (int i = 0; i < p.size(); i++)
for (; k % p[i] == 0; k /= p[i])
t ^= 1 << i;
insert(t);
}
write((binpow(2, n - cnt) - 1 + mod) % mod);
return 0;
}