LuoGu: CF724E Goods transportation
CF: E. Goods transportation
可以建出最大流模型,最大流等于最小割,考虑最小割。
源点和汇点被割开当且仅当中间的 $n$ 个点不同时连接源点和汇点。一个点如果不和源点连通,代价为和源点连接的边的代价以及每条前面和源点连接的点的边 $c$ 的代价;不和汇点连通,代价为和汇点连接的边的代价。
查看代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
| #include <cstdio> #include <algorithm> using namespace std; template <class Type> void read (Type &x) { char c; bool flag = false; while ((c = getchar()) < '0' || c > '9') c == '-' && (flag = true); x = c - '0'; while ((c = getchar()) >= '0' && c <= '9') x = (x << 1) + (x << 3) + c - '0'; flag && (x = ~x + 1); } template <class Type> void write (Type x) { x < 0 && (putchar('-'), x = ~x + 1); x > 9 && (write(x / 10), 0); putchar('0' + x % 10); } typedef long long LL; const int N = 1e4 + 10; int n; LL m, w[N], v[N], f[N]; int main () { read(n), read(m); for (int i = 1; i <= n; i++) read(w[i]); for (int i = 1; i <= n; i++) read(v[i]); for (int i = 1; i <= n; i++) { f[i] = f[i - 1] + v[i]; for (int j = i - 1; j; j--) f[j] = min(f[j - 1] + v[i], f[j] + w[i] + m * j); f[0] += w[i]; } LL res = 1e18; for (int i = 0; i <= n; i++) res = min(res, f[i]); write(res); return 0; }
|