Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

CF600E Lomsat gelral

LuoGu: CF600E Lomsat gelral

CF: E. Lomsat gelral

首先考虑暴力,对于每一个点 $u$ ,将每个子树的颜色统计上,并更新答案,对于每一个节点都需要便利所有子树,复杂的为 $O(n^2)$ 。但是我们可以发现,在计算一个点时,可以选择一个儿子将其信息直接拿过来,选择节点个数最多的子树显然是最快的。

所以我们得到了启发式合并的策略:

对于每一个节点:

  • 递归搜索所有轻儿子,完成后清空;
  • 搜索重儿子,完成后不清空;
  • 搜索所有的轻儿子,将信息叠上;
  • 即得到了该点的答案。
查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10, M = 2e5 + 10;
LL mx, sum, ans[N];
int n, c[N], cnt[N];
int p[N], sz[N], son[N];
int idx, hd[N], nxt[M], edg[M];
void dfs1(int x)
{
sz[x] = 1;
son[x] = -1;
for (int i = hd[x]; ~i; i = nxt[i])
{
if (p[edg[i]])
continue;
p[edg[i]] = x;
dfs1(edg[i]);
sz[x] += sz[edg[i]];
if (son[x] == -1 || sz[edg[i]] > sz[son[x]])
son[x] = edg[i];
}
}
void update(int x, int op, int avoid)
{
cnt[c[x]] += op;
if (cnt[c[x]] > mx)
{
mx = cnt[c[x]];
sum = c[x];
}
else if (cnt[c[x]] == mx)
sum += c[x];
for (int i = hd[x]; ~i; i = nxt[i])
if (edg[i] != avoid && edg[i] != p[x])
update(edg[i], op, avoid);
}
void dfs2(int x, int op)
{
for (int i = hd[x]; ~i; i = nxt[i])
if (edg[i] != son[x] && edg[i] != p[x])
dfs2(edg[i], 0);
if (~son[x])
dfs2(son[x], 1);
update(x, 1, son[x]);
ans[x] = sum;
if (!op)
{
update(x, -1, 0);
sum = mx = 0;
}
}
void add(int a, int b)
{
nxt[++idx] = hd[a];
hd[a] = idx;
edg[idx] = b;
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
hd[i] = -1;
for (int i = 1; i <= n; i++)
scanf("%d", &c[i]);
for (int i = 1, a, b; i < n; i++)
{
scanf("%d%d", &a, &b);
add(a, b);
add(b, a);
}
p[1] = -1;
dfs1(1);
dfs2(1, 1);
for (int i = 1; i <= n; i++)
printf("%lld ", ans[i]);
return 0;
}