Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

CF451E Devu and Flowers

LuoGu: CF451E Devu and Flowers

CF: E. Devu and Flowers

容斥原理的一般形式:

$$
f(S)=\sum_{T\subseteq S}g(T)
$$

那么就有

$$
g(S)=\sum_{T\subseteq S}(-1)^{|S|-|T|}f(T)
$$

或者有补集的形式:

$$
f(S)=\sum_{S\subseteq T}g(T)
$$

那么

$$
g(S)=\sum_{S\subseteq T}(-1)^{|T|-|S|}f(T)
$$

先不考虑每个数的限制,$n$ 种物品种选择 $m$ 个,每种物品没有限制,那么有 $\binom {n - 1}{n + m - 1}$ 种方案。考虑隔板法,如果每种至少选择一个,答案为 $\binom {n - 1}{m - 1}$ ,现在没有要求至少选择一个,那么相当于多了 $n$ 个物品,然后至少选择一个,即 $\binom {n + m - 1} {n - 1}$ 。

现在有了限制,考虑容斥,选择一个集合其中都超过了限制,那么将还剩的数继续分给其他的数。记 $f _ S$ 表示集合内的所有元素钦定超过限制的情况的答案,$g _ S$ 表示集合内的所有元素都恰好超过限制的情况的答案,那么有 $ f _ S = \binom {n + m - 1 - (\sum _ {i \in S} n _ i + 1)} {m - 1}$ ,并且有 $f _ S = \sum _ {T \subseteq S} g _ S$ ,由容斥原理的一般形式,有 $g(S)=\sum_{S\subseteq T}(-1)^{|T|-|S|}f(T)$ ,那么答案 $g(0) = \sum _ {T} (-1) ^ {|T|} f(T)$ 。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <cstdio>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...rest>
void read(Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write(Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
typedef long long LL;
const int N = 30, mod = 1e9 + 7;
void adj (int &x)
{
x += x >> 31 & mod;
}
LL m, w[N];
int n, inv[N];
void init ()
{
inv[1] = 1;
for (int i = 2; i <= n; ++i)
inv[i] = (LL)(mod - mod / i) * inv[mod % i] % mod;
}
int C (LL a, int b)
{
if (a < 0 || b < 0 || a < b) return 0;
a %= mod;
if (!a || !b) return 1;
int res = 1;
for (int i = 0; i < b; ++i)
res = (LL)res * (a - i) % mod;
for (int i = 1; i <= b; ++i)
res = (LL)res * inv[i] % mod;
return res;
}
int main ()
{
read(n, m);
init();
for (int i = 1; i <= n; ++i) read(w[i]);
int res = 0;
for (int i = 0; i < 1 << n; ++i)
{
LL t = n + m - 1;
int p = 0;
for (int j = 0; j < n; ++j)
if (i >> j & 1) ++p, t -= w[j + 1] + 1;
p & 1 ? adj(res -= C(t, n - 1)) : adj(res += C(t, n - 1) - mod);
}
write(res);
return 0;
}