Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

CF165E Compatible Numbers

LuoGu: CF165E Compatible Numbers

CF: E. Compatible Numbers

a & b = 0 等价于将 $a$ 取反后 $b \subseteq a$ ,对于每一个数考察是否子集中有数,考虑高维前缀和,任选一个即可。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <cstdio>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar(x % 10 + '0');
}
const int N = 1 << 22;
int n, w[N], f[N];
int main()
{
read(n);
for (int i = 1; i <= n; i++)
{
read(w[i]);
f[w[i]] = w[i];
}
for (int i = 0; i < 22; i++)
for (int j = 0; j < 1 << 22; j++)
j >> i & 1 && !f[j] && (f[j] = f[j ^ 1 << i]);
for (int i = 1; i <= n; i++)
{
int t = (1 << 22) - 1 ^ w[i];
write(f[t] ? f[t] : -1), putchar(' ');
}
return 0;
}