LuoGu: CF1228E Another Filling the Grid
CF: E. Another Filling the Grid
记 $f(x, y)$ 表示至少有 $x$ 行 $y$ 列没有 $1$ ,显然有 $f(x, y) = \binom n x \binom n y k ^ {n \times n - (n - x) \times (n - y)} (k - 1) ^ {(n - x) \times (n - y)}$ 。
记 $g(x, y)$ 表示刚好有 $x$ 行 $y$ 列没有 $1$ ,那么有 $f(x, y) = \sum _ {i = x} ^ n \sum _ {j = y} ^ n \binom i x \binom j y g(i, j)$ ,上二维二项式反演,那么有 $g(x, y) = \sum _ {i = x} ^ n \sum _ {j = y} ^ n \binom i x \binom j y (-1) ^ {i + j - x - y}f(i, j)$ 。
带入 $x = 0, y = 0$ 即为答案 $\sum _ {i = 0} ^ n \sum _ {j = 0} ^ n (-1) ^ {i + j} \binom n i \binom n j k ^ {n \times n - (n - i) \times (n - j)} (k - 1) ^ {(n - i) \times (n - j)}$。
可以进一步优化,固定 $i$,整理得 $\sum _ {i = 0} ^ n \binom n i (-1) ^ i (k - 1) ^ {in} k ^ {n ^ 2 - ni} \sum _ {j = 0} ^ n \binom n j (-\frac {(k - 1) ^ n} {(k - 1) ^ {in} k ^ {n ^ 2 - ni} }) ^ j$ 。对后部分上二项式定理,那么有 $\sum _ {i = 0} ^ n \binom n i (-1) ^ i (k - 1) ^ {in} k ^ {n ^ 2 - ni} (1 -\frac {(k - 1) ^ n} {(k - 1) ^ {in} k ^ {n ^ 2 - ni} }) ^ n$ 。 可以做到 $O(n)$ 。
查看代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
| #include <cstdio> using namespace std; template <class Type> void read (Type &x) { char c; bool flag = false; while ((c = getchar()) < '0' || c > '9') flag |= c == '-'; x = c - '0'; while ((c = getchar()) >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0'; if (flag) x = ~x + 1; } template <class Type, class ...Rest> void read (Type &x, Rest &...y) { read(x); read(y...); } template <class Type> void write (Type x) { if (x < 0) putchar('-'), x = ~x + 1; if (x > 9) write(x / 10); putchar('0' + x % 10); } typedef long long LL; const int N = 62510, mod = 1e9 + 7; int n, m; int inv[N], fact[N], ifact[N]; int binpow (int b, int k) { int res = 1; for (; k; k >>= 1, b = (LL)b * b % mod) if (k & 1) res = (LL)res * b % mod; return res; } void init () { inv[1] = 1; for (int i = 2; i < N; ++i) inv[i] = -(LL)(mod / i) * inv[mod % i] % mod; fact[0] = ifact[0] = 1; for (int i = 1; i < N; ++i) { fact[i] = (LL)fact[i - 1] * i % mod; ifact[i] = (LL)ifact[i - 1] * inv[i] % mod; } } int C (int a, int b) { return a < b ? 0 : (LL)fact[a] * ifact[b] % mod * ifact[a - b] % mod; } int main () { init(); read(n, m); int res = 0; for (int i = 0; i <= n; ++i) for (int j = 0; j <= n; ++j) { int tot = (n - i) * (n - j); (res += (i + j & 1 ? -1ll : 1ll) * C(n, i) * C(n, j) % mod * binpow(m, tot) % mod * binpow(m - 1, n * n - tot) % mod) %= mod; } write((res + mod) % mod); return 0; }
|