Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

CF1208F Bits And Pieces

LuoGu: CF1208F Bits And Pieces

CF: F. Bits And Pieces

从后向前枚举 $i$ ,贪心从高位取,如果后面有两个及以上的数含有子集当前这个数,那么可以取。

每次 check 答案后,将所有当前数的子集打上标记,直接枚举所有的子集会 T 飞,如果已经有两个标记,不必在继续,这样均摊 $O(n)$ 。

总复杂度 $O(n \log n)$ 。

另外这里有一个枚举子集的 trick :

1
2
for (int i = x; i; i = i - 1 & x)
s[i]++;
查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include <cstdio>
#include <algorithm>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar(x % 10 + '0');
}
const int N = 5e6 + 10;
int n, w[N], s[N], vis[N];
void add(int x, int t)
{
if (s[x] > 1 || vis[x] == t)
return;
s[x]++, vis[x] = t;
for (int i = 0; (1 << i) <= x; i++)
x >> i & 1 && (add(x ^ 1 << i, t), 0);
}
int main()
{
read(n);
for (int i = 1; i <= n; i++)
read(w[i]);
add(w[n], n), add(w[n - 1], n - 1);
int res = 0;
for (int i = n - 2; i; i--)
{
int k = 0;
for (int j = 20; ~j; j--)
if (!(w[i] >> j & 1) && s[k ^ 1 << j] > 1)
k ^= 1 << j;
res = max(res, w[i] | k);
add(w[i], i);
}
write(res);
return 0;
}