Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

CF1109F Sasha and Algorithm of Silence's Sounds

LuoGu: CF1109F Sasha and Algorithm of Silence’s Sounds

CF: F. Sasha and Algorithm of Silence’s Sounds

注意到一个单调性,如果图已经成了环了,那么再添加点一定不会成为一个树,考虑双指针,对于一个左指针,考虑最多到哪个右指针可以使得不为一个环,右指针移动的过程中,指针间构成的区间都可以考虑是否成为答案。如果不为一个环,成为一个树的条件是 $m = n - 1$ ,考虑维护每个右指针对应的 $w _ i = n - m$ ,当右指针向右移动一个后,后面的 $[r, nm]$ 都会添加 $r$ 点,对应的 $w _ i$ 都会变化 $1 - cnt$ ,其中 $cnt$ 为增加的边数。查询时需要查询 $[l, r]$ 间 $w _ i = 1$ 的个数,注意到,如果图不为一个环,那么 $w _ i \ge 1$ 。所以需要一个支持区间修改,区间查询最小值个数的数据结构,线段树就可以很好的维护。另外还需要维护是否为一个环,需要支持动态加边删边,$LCT$ 即可。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
flag && (x = ~x + 1);
}
template <class Type>
void write(Type x)
{
x < 0 && (putchar('-'), x = ~x + 1);
x > 9 && (write(x / 10), 0);
putchar(x % 10 + '0');
}
const int N = 2e5 + 10, dx[] = {1, -1, 0, 0}, dy[] = {0, 0, 1, -1};
int n, m, w[N];
vector <int> g[N];
namespace LCT
{
struct Node
{
int p, s[2], tag;
} tr[N];
void reverse(int x)
{
tr[x].tag ^= 1;
swap(tr[x].s[0], tr[x].s[1]);
}
void pushdown(int x)
{
if (tr[x].tag)
{
reverse(tr[x].s[0]);
reverse(tr[x].s[1]);
tr[x].tag = 0;
}
}
bool isroot(int x)
{
return tr[tr[x].p].s[0] ^ x && tr[tr[x].p].s[1] ^ x;
}
void rotate(int x)
{
int y = tr[x].p, z = tr[y].p;
int k = tr[y].s[1] == x;
!isroot(y) && (tr[z].s[tr[z].s[1] == y] = x);
tr[x].p = z;
tr[y].s[k] = tr[x].s[k ^ 1], tr[tr[x].s[k ^ 1]].p = y;
tr[x].s[k ^ 1] = y, tr[y].p = x;
}
void update(int x)
{
!isroot(x) && (update(tr[x].p), 0);
pushdown(x);
}
void splay(int x)
{
update(x);
for (; !isroot(x); rotate(x))
{
int y = tr[x].p, z = tr[y].p;
!isroot(y) && (rotate((y == tr[z].s[1]) ^ (x == tr[y].s[1]) ? x : y), 0);
}
}
void access(int x)
{
int tmp = x;
for (int y = 0; x; y = x, x = tr[x].p)
{
splay(x);
tr[x].s[1] = y;
}
splay(tmp);
}
void mkroot(int x)
{
access(x);
reverse(x);
}
int findroot(int x)
{
access(x);
for (; tr[x].s[0]; x = tr[x].s[0])
pushdown(x);
splay(x);
return x;
}
void split(int x, int y)
{
mkroot(x);
access(y);
}
bool link(int x, int y)
{
mkroot(x);
return findroot(y) ^ x ? tr[x].p = y, true : false;
}
void cut(int x, int y)
{
mkroot(x);
if (findroot(y) == x && tr[y].p == x && !tr[y].s[0])
tr[x].s[1] = tr[y].p = 0;
}
}
namespace SegmentTree
{
struct Node
{
int l, r, mn, cnt, tag;
} tr[N << 2];
void pushup (int x)
{
tr[x].mn = min(tr[x << 1].mn, tr[x << 1 | 1].mn);
tr[x].cnt = 0;
tr[x << 1].mn == tr[x].mn && (tr[x].cnt += tr[x << 1].cnt);
tr[x << 1 | 1].mn == tr[x].mn && (tr[x].cnt += tr[x << 1 | 1].cnt);
}
void add (int x, int k)
{
tr[x].mn += k, tr[x].tag += k;
}
void pushdown (int x)
{
add(x << 1, tr[x].tag), add(x << 1 | 1, tr[x].tag);
tr[x].tag = 0;
}
void build (int l = 1, int r = n * m, int x = 1)
{
tr[x].l = l, tr[x].r = r;
if (l == r)
return tr[x].mn = 0, tr[x].cnt = 1, void();
int mid = l + r >> 1;
build(l, mid, x << 1), build(mid + 1, r, x << 1 | 1);
pushup(x);
}
void modify (int l, int r, int k, int x = 1)
{
if (l > tr[x].r || tr[x].l > r)
return;
if (tr[x].l >= l && tr[x].r <= r)
return add(x, k);
pushdown(x);
modify(l, r, k, x << 1), modify(l, r, k, x << 1 | 1);
pushup(x);
}
int query (int l, int r, int x = 1)
{
if (l > tr[x].r || tr[x].l > r)
return 0;
if (tr[x].l >= l && tr[x].r <= r)
return tr[x].mn == 1 ? tr[x].cnt : 0;
pushdown(x);
return query(l, r, x << 1) + query(l, r, x << 1 | 1);
}
}
bool inside (int a, int b)
{
return a > 0 && b > 0 && a <= n && b <= m;
}
int num (int a, int b)
{
return (a - 1) * m + b;
}
int main ()
{
read(n), read(m);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
read(w[num(i, j)]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
for (int k = 0, p = num(i, j); k < 4; k++)
{
int nx = i + dx[k], ny = j + dy[k];
inside(nx, ny) && (g[w[p]].push_back(w[num(nx, ny)]), 0);
}
SegmentTree::build();
LL res = 0;
for (int l = 1, r = 0; l <= n * m; l++)
{
for (bool flag = true; flag && r < n * m; )
{
int cnt = 0;
for (int i : g[r + 1])
if (i < r + 1 && i >= l)
cnt++, flag &= LCT::link(i, r + 1);
if (flag)
SegmentTree::modify(++r, n * m, 1 - cnt);
else
for (int i : g[r + 1])
i < r + 1 && i >= l && (LCT::cut(i, r + 1), 0);
}
res += SegmentTree::query(l, r);
for (int i : g[l])
if (i <= r && i > l)
{
LCT::cut(l, i);
SegmentTree::modify(i, n * m, 1);
}
SegmentTree::modify(l, n * m, -1);
}
write(res);
return 0;
}