Blog of RuSun

\begin {array}{c} \mathfrak {One Problem Is Difficult} \\\\ \mathfrak {Because You Don't Know} \\\\ \mathfrak {Why It Is Diffucult} \end {array}

CF1067A Array Without Local Maximums

LuoGu: CF1067A Array Without Local Maximums

CF: A. Array Without Local Maximums

对于 $a _ i \le \max(a _ {i - 1}, a _ {i + 1})$ ,即 $a _ i \le a _ {i - 1} \vee a _ i \le a _ {i + 1}$ ,当选择 $i$ 位置时,需要知道 $a _ {i - 1}$ 和 $a _ i$ 的关系。考虑 DP,$f _ {i, j, k}$ 表示在第 $i$ 个数,选择了 $j$ ,和上一个数的关系是否满足条件时的方案数。那么对于每一个 $n$ ,枚举这个数选择什么,枚举上一个数选择什么,发现可以前缀和优化。可以做到 $O(nm)$ 。滚动数组。

查看代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <cstdio>
using namespace std;
template <class Type>
void read(Type &x)
{
char c;
bool flag = false;
while ((c = getchar()) < '0' || c > '9')
c == '-' && (flag = true);
x = c - '0';
while ((c = getchar()) >= '0' && c <= '9')
x = (x << 3) + (x << 1) + c - '0';
if (flag) x = ~x + 1;
}
template <class Type, class ...rest>
void read(Type &x, rest &...y) { read(x), read(y...); }
template <class Type>
void write(Type x)
{
if (x < 0) putchar('-'), x = ~x + 1;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
}
const int N = 1e5 + 10, m = 200, mod = 998244353;
int n, w[N], f[2][m + 10][2];
void adj (int &x) { x += x >> 31 & mod; }
int main ()
{
read(n);
for (int i = 1; i <= n; ++i) read(w[i]);
for (int i = 1; i <= m; ++i) if (w[1] == i || !~w[1])
for (int j = i; j <= m; ++j) if (w[2] == j || !~w[2])
++f[0][j][i == j];
for (int j = 2; j <= m; ++j)
adj(f[0][j][0] += f[0][j - 1][0] - mod), adj(f[0][j][1] += f[0][j - 1][1] - mod);
for (int i = 3; i <= n; ++i)
for (int j = 1; j <= m; ++j)
{
f[i & 1][j][0] = f[i & 1][j - 1][0], f[i & 1][j][1] = f[i & 1][j - 1][1];
if (w[i] ^ j && ~w[i]) continue;
adj(f[i & 1][j][0] += f[i - 1 & 1][j - 1][0] - mod), adj(f[i & 1][j][0] += f[i - 1 & 1][j - 1][1] - mod);
adj(f[i & 1][j][1] += f[i - 1 & 1][m][1] - mod), adj(f[i & 1][j][1] -= f[i - 1 & 1][j - 1][1]);
adj(f[i & 1][j][1] += f[i - 1 & 1][j][0] - mod), adj(f[i & 1][j][1] -= f[i - 1 & 1][j - 1][0]);
}
write(f[n & 1][m][1]);
return 0;
}